MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3ds Structured version   Visualization version   GIF version

Theorem isfin3ds 9745
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015.)
Hypothesis
Ref Expression
isfin3ds.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
isfin3ds (𝐴𝑉 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable group:   𝑎,𝑏,𝑓,𝑔,𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑓,𝑔,𝑎,𝑏)

Proof of Theorem isfin3ds
StepHypRef Expression
1 suceq 6250 . . . . . . . . 9 (𝑏 = 𝑥 → suc 𝑏 = suc 𝑥)
21fveq2d 6668 . . . . . . . 8 (𝑏 = 𝑥 → (𝑎‘suc 𝑏) = (𝑎‘suc 𝑥))
3 fveq2 6664 . . . . . . . 8 (𝑏 = 𝑥 → (𝑎𝑏) = (𝑎𝑥))
42, 3sseq12d 3999 . . . . . . 7 (𝑏 = 𝑥 → ((𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ (𝑎‘suc 𝑥) ⊆ (𝑎𝑥)))
54cbvralvw 3449 . . . . . 6 (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ ∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥))
6 fveq1 6663 . . . . . . . 8 (𝑎 = 𝑓 → (𝑎‘suc 𝑥) = (𝑓‘suc 𝑥))
7 fveq1 6663 . . . . . . . 8 (𝑎 = 𝑓 → (𝑎𝑥) = (𝑓𝑥))
86, 7sseq12d 3999 . . . . . . 7 (𝑎 = 𝑓 → ((𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
98ralbidv 3197 . . . . . 6 (𝑎 = 𝑓 → (∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
105, 9syl5bb 285 . . . . 5 (𝑎 = 𝑓 → (∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) ↔ ∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥)))
11 rneq 5800 . . . . . . 7 (𝑎 = 𝑓 → ran 𝑎 = ran 𝑓)
1211inteqd 4873 . . . . . 6 (𝑎 = 𝑓 ran 𝑎 = ran 𝑓)
1312, 11eleq12d 2907 . . . . 5 (𝑎 = 𝑓 → ( ran 𝑎 ∈ ran 𝑎 ran 𝑓 ∈ ran 𝑓))
1410, 13imbi12d 347 . . . 4 (𝑎 = 𝑓 → ((∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ (∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1514cbvralvw 3449 . . 3 (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓))
16 pweq 4541 . . . . 5 (𝑔 = 𝐴 → 𝒫 𝑔 = 𝒫 𝐴)
1716oveq1d 7165 . . . 4 (𝑔 = 𝐴 → (𝒫 𝑔m ω) = (𝒫 𝐴m ω))
1817raleqdv 3415 . . 3 (𝑔 = 𝐴 → (∀𝑓 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓) ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
1915, 18syl5bb 285 . 2 (𝑔 = 𝐴 → (∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎) ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
20 isfin3ds.f . 2 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑏 ∈ ω (𝑎‘suc 𝑏) ⊆ (𝑎𝑏) → ran 𝑎 ∈ ran 𝑎)}
2119, 20elab2g 3667 1 (𝐴𝑉 → (𝐴𝐹 ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑥 ∈ ω (𝑓‘suc 𝑥) ⊆ (𝑓𝑥) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {cab 2799  wral 3138  wss 3935  𝒫 cpw 4538   cint 4868  ran crn 5550  suc csuc 6187  cfv 6349  (class class class)co 7150  ωcom 7574  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-int 4869  df-br 5059  df-opab 5121  df-cnv 5557  df-dm 5559  df-rn 5560  df-suc 6191  df-iota 6308  df-fv 6357  df-ov 7153
This theorem is referenced by:  ssfin3ds  9746  fin23lem17  9754  fin23lem39  9766  fin23lem40  9767  isf32lem12  9780  isfin3-3  9784
  Copyright terms: Public domain W3C validator