MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4 Structured version   Visualization version   GIF version

Theorem isfin4 9104
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin4 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝐴)))
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem isfin4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psseq2 3687 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
2 breq2 4648 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
31, 2anbi12d 746 . . . 4 (𝑥 = 𝐴 → ((𝑦𝑥𝑦𝑥) ↔ (𝑦𝐴𝑦𝐴)))
43exbidv 1848 . . 3 (𝑥 = 𝐴 → (∃𝑦(𝑦𝑥𝑦𝑥) ↔ ∃𝑦(𝑦𝐴𝑦𝐴)))
54notbid 308 . 2 (𝑥 = 𝐴 → (¬ ∃𝑦(𝑦𝑥𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝐴)))
6 df-fin4 9094 . 2 FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦𝑥𝑦𝑥)}
75, 6elab2g 3347 1 (𝐴𝑉 → (𝐴 ∈ FinIV ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988  wpss 3568   class class class wbr 4644  cen 7937  FinIVcfin4 9087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-fin4 9094
This theorem is referenced by:  fin4i  9105  fin4en1  9116  ssfin4  9117  infpssALT  9120  isfin4-2  9121
  Copyright terms: Public domain W3C validator