![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfin5 | Structured version Visualization version GIF version |
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
isfin5 | ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin5 9149 | . . 3 ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} | |
2 | 1 | eleq2i 2722 | . 2 ⊢ (𝐴 ∈ FinV ↔ 𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))}) |
3 | id 22 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
4 | 0ex 4823 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | syl6eqel 2738 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
6 | relsdom 8004 | . . . . 5 ⊢ Rel ≺ | |
7 | 6 | brrelexi 5192 | . . . 4 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V) |
8 | 5, 7 | jaoi 393 | . . 3 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) → 𝐴 ∈ V) |
9 | eqeq1 2655 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) | |
10 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
11 | 10, 10 | oveq12d 6708 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 +𝑐 𝑥) = (𝐴 +𝑐 𝐴)) |
12 | 10, 11 | breq12d 4698 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 +𝑐 𝑥) ↔ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
13 | 9, 12 | orbi12d 746 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))) |
14 | 8, 13 | elab3 3390 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
15 | 2, 14 | bitri 264 | 1 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 = wceq 1523 ∈ wcel 2030 {cab 2637 Vcvv 3231 ∅c0 3948 class class class wbr 4685 (class class class)co 6690 ≺ csdm 7996 +𝑐 ccda 9027 FinVcfin5 9142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-iota 5889 df-fv 5934 df-ov 6693 df-dom 7999 df-sdom 8000 df-fin5 9149 |
This theorem is referenced by: isfin5-2 9251 fin56 9253 |
Copyright terms: Public domain | W3C validator |