MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite Structured version   Visualization version   GIF version

Theorem isfinite 8493
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.)
Assertion
Ref Expression
isfinite (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)

Proof of Theorem isfinite
StepHypRef Expression
1 omex 8484 . 2 ω ∈ V
2 isfiniteg 8164 . 2 (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))
31, 2ax-mp 5 1 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1987  Vcvv 3186   class class class wbr 4613  ωcom 7012  csdm 7898  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903
This theorem is referenced by:  fict  8494  infxpenlem  8780  pwsdompw  8970  cflim2  9029  axcc4dom  9207  domtriom  9209  fin41  9210  dominf  9211  infinf  9332  unirnfdomd  9333  dominfac  9339  cfpwsdom  9350  canthp1lem2  9419  pwfseqlem3  9426  pwfseqlem4a  9427  pwfseqlem4  9428  gchpwdom  9436  gchaleph  9437  gchhar  9445  omina  9457  gchina  9465  tskpr  9536  rexpen  14882  odinf  17901  fctop2  20719  dis1stc  21212  ovolfi  23169  iunmbl2  23232  dyadmbl  23274  f1ocnt  29400  sibfof  30183  mblfinlem1  33078  ovoliunnfl  33083  heiborlem3  33244  ctbnfien  36862  pellex  36879  numinfctb  37154  saluncl  39844  meadjun  39986  meaiunlelem  39992  omeunle  40037
  Copyright terms: Public domain W3C validator