MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfinite2 Structured version   Visualization version   GIF version

Theorem isfinite2 8169
Description: Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
isfinite2 (𝐴 ≺ ω → 𝐴 ∈ Fin)

Proof of Theorem isfinite2
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relsdom 7913 . . 3 Rel ≺
21brrelex2i 5124 . 2 (𝐴 ≺ ω → ω ∈ V)
3 sdomdom 7934 . . . 4 (𝐴 ≺ ω → 𝐴 ≼ ω)
4 domeng 7920 . . . 4 (ω ∈ V → (𝐴 ≼ ω ↔ ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
53, 4syl5ib 234 . . 3 (ω ∈ V → (𝐴 ≺ ω → ∃𝑦(𝐴𝑦𝑦 ⊆ ω)))
6 ensym 7956 . . . . . . . . . . 11 (𝐴𝑦𝑦𝐴)
76ad2antrl 763 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦𝐴)
8 simpl 473 . . . . . . . . . 10 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ≺ ω)
9 ensdomtr 8047 . . . . . . . . . 10 ((𝑦𝐴𝐴 ≺ ω) → 𝑦 ≺ ω)
107, 8, 9syl2anc 692 . . . . . . . . 9 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ≺ ω)
11 sdomnen 7935 . . . . . . . . 9 (𝑦 ≺ ω → ¬ 𝑦 ≈ ω)
1210, 11syl 17 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ 𝑦 ≈ ω)
13 simpr 477 . . . . . . . . 9 ((𝐴𝑦𝑦 ⊆ ω) → 𝑦 ⊆ ω)
14 unbnn 8167 . . . . . . . . . 10 ((ω ∈ V ∧ 𝑦 ⊆ ω ∧ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤) → 𝑦 ≈ ω)
15143expia 1264 . . . . . . . . 9 ((ω ∈ V ∧ 𝑦 ⊆ ω) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
162, 13, 15syl2an 494 . . . . . . . 8 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ≈ ω))
1712, 16mtod 189 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
18 rexnal 2990 . . . . . . . . 9 (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤 ↔ ¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤)
19 omsson 7023 . . . . . . . . . . . . 13 ω ⊆ On
20 sstr 3595 . . . . . . . . . . . . 13 ((𝑦 ⊆ ω ∧ ω ⊆ On) → 𝑦 ⊆ On)
2119, 20mpan2 706 . . . . . . . . . . . 12 (𝑦 ⊆ ω → 𝑦 ⊆ On)
22 nnord 7027 . . . . . . . . . . . 12 (𝑧 ∈ ω → Ord 𝑧)
23 ssel2 3582 . . . . . . . . . . . . . . . . . 18 ((𝑦 ⊆ On ∧ 𝑤𝑦) → 𝑤 ∈ On)
24 vex 3192 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
2524elon 5696 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ On ↔ Ord 𝑤)
2623, 25sylib 208 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ On ∧ 𝑤𝑦) → Ord 𝑤)
27 ordtri1 5720 . . . . . . . . . . . . . . . . 17 ((Ord 𝑤 ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2826, 27sylan 488 . . . . . . . . . . . . . . . 16 (((𝑦 ⊆ On ∧ 𝑤𝑦) ∧ Ord 𝑧) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
2928an32s 845 . . . . . . . . . . . . . . 15 (((𝑦 ⊆ On ∧ Ord 𝑧) ∧ 𝑤𝑦) → (𝑤𝑧 ↔ ¬ 𝑧𝑤))
3029ralbidva 2980 . . . . . . . . . . . . . 14 ((𝑦 ⊆ On ∧ Ord 𝑧) → (∀𝑤𝑦 𝑤𝑧 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤))
31 unissb 4440 . . . . . . . . . . . . . 14 ( 𝑦𝑧 ↔ ∀𝑤𝑦 𝑤𝑧)
32 ralnex 2987 . . . . . . . . . . . . . . 15 (∀𝑤𝑦 ¬ 𝑧𝑤 ↔ ¬ ∃𝑤𝑦 𝑧𝑤)
3332bicomi 214 . . . . . . . . . . . . . 14 (¬ ∃𝑤𝑦 𝑧𝑤 ↔ ∀𝑤𝑦 ¬ 𝑧𝑤)
3430, 31, 333bitr4g 303 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧 ↔ ¬ ∃𝑤𝑦 𝑧𝑤))
35 ordunisssuc 5794 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ Ord 𝑧) → ( 𝑦𝑧𝑦 ⊆ suc 𝑧))
3634, 35bitr3d 270 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ Ord 𝑧) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
3721, 22, 36syl2an 494 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ⊆ suc 𝑧))
38 peano2b 7035 . . . . . . . . . . . . . 14 (𝑧 ∈ ω ↔ suc 𝑧 ∈ ω)
39 ssnnfi 8130 . . . . . . . . . . . . . 14 ((suc 𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4038, 39sylanb 489 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑦 ⊆ suc 𝑧) → 𝑦 ∈ Fin)
4140ex 450 . . . . . . . . . . . 12 (𝑧 ∈ ω → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4241adantl 482 . . . . . . . . . . 11 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (𝑦 ⊆ suc 𝑧𝑦 ∈ Fin))
4337, 42sylbid 230 . . . . . . . . . 10 ((𝑦 ⊆ ω ∧ 𝑧 ∈ ω) → (¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4443rexlimdva 3025 . . . . . . . . 9 (𝑦 ⊆ ω → (∃𝑧 ∈ ω ¬ ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4518, 44syl5bir 233 . . . . . . . 8 (𝑦 ⊆ ω → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4645ad2antll 764 . . . . . . 7 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → (¬ ∀𝑧 ∈ ω ∃𝑤𝑦 𝑧𝑤𝑦 ∈ Fin))
4717, 46mpd 15 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝑦 ∈ Fin)
48 simprl 793 . . . . . 6 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴𝑦)
49 enfii 8128 . . . . . 6 ((𝑦 ∈ Fin ∧ 𝐴𝑦) → 𝐴 ∈ Fin)
5047, 48, 49syl2anc 692 . . . . 5 ((𝐴 ≺ ω ∧ (𝐴𝑦𝑦 ⊆ ω)) → 𝐴 ∈ Fin)
5150ex 450 . . . 4 (𝐴 ≺ ω → ((𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
5251exlimdv 1858 . . 3 (𝐴 ≺ ω → (∃𝑦(𝐴𝑦𝑦 ⊆ ω) → 𝐴 ∈ Fin))
535, 52sylcom 30 . 2 (ω ∈ V → (𝐴 ≺ ω → 𝐴 ∈ Fin))
542, 53mpcom 38 1 (𝐴 ≺ ω → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wex 1701  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  wss 3559   cuni 4407   class class class wbr 4618  Ord word 5686  Oncon0 5687  suc csuc 5689  ωcom 7019  cen 7903  cdom 7904  csdm 7905  Fincfn 7906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910
This theorem is referenced by:  isfiniteg  8171  unfi2  8180  unifi2  8207  axcclem  9230  dirith2  25130  padct  29358  volmeas  30093  axccdom  38913  axccd2  38927
  Copyright terms: Public domain W3C validator