MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfiniteg Structured version   Visualization version   GIF version

Theorem isfiniteg 8083
Description: A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
isfiniteg (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))

Proof of Theorem isfiniteg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 7843 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 nnsdomg 8082 . . . . 5 ((ω ∈ V ∧ 𝑥 ∈ ω) → 𝑥 ≺ ω)
3 sdomen1 7967 . . . . 5 (𝐴𝑥 → (𝐴 ≺ ω ↔ 𝑥 ≺ ω))
42, 3syl5ibrcom 235 . . . 4 ((ω ∈ V ∧ 𝑥 ∈ ω) → (𝐴𝑥𝐴 ≺ ω))
54rexlimdva 3012 . . 3 (ω ∈ V → (∃𝑥 ∈ ω 𝐴𝑥𝐴 ≺ ω))
61, 5syl5bi 230 . 2 (ω ∈ V → (𝐴 ∈ Fin → 𝐴 ≺ ω))
7 isfinite2 8081 . 2 (𝐴 ≺ ω → 𝐴 ∈ Fin)
86, 7impbid1 213 1 (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wcel 1976  wrex 2896  Vcvv 3172   class class class wbr 4577  ωcom 6935  cen 7816  csdm 7818  Fincfn 7819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823
This theorem is referenced by:  unfi2  8092  unifi2  8117  isfinite  8410  axcclem  9140
  Copyright terms: Public domain W3C validator