Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne Structured version   Visualization version   GIF version

Theorem isfne 33682
Description: The predicate "𝐵 is finer than 𝐴". This property is, in a sense, the opposite of refinement, as refinement requires every element to be a subset of an element of the original and fineness requires that every element of the original have a subset in the finer cover containing every point. I do not know of a literature reference for this. (Contributed by Jeff Hankins, 28-Sep-2009.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hints:   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem isfne
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnerel 33681 . . . . 5 Rel Fne
21brrelex1i 5603 . . . 4 (𝐴Fne𝐵𝐴 ∈ V)
32anim1i 616 . . 3 ((𝐴Fne𝐵𝐵𝐶) → (𝐴 ∈ V ∧ 𝐵𝐶))
43ancoms 461 . 2 ((𝐵𝐶𝐴Fne𝐵) → (𝐴 ∈ V ∧ 𝐵𝐶))
5 simpr 487 . . . . 5 ((𝐵𝐶𝑋 = 𝑌) → 𝑋 = 𝑌)
6 isfne.1 . . . . 5 𝑋 = 𝐴
7 isfne.2 . . . . 5 𝑌 = 𝐵
85, 6, 73eqtr3g 2879 . . . 4 ((𝐵𝐶𝑋 = 𝑌) → 𝐴 = 𝐵)
9 simpr 487 . . . . . . 7 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 = 𝐵)
10 uniexg 7460 . . . . . . . 8 (𝐵𝐶 𝐵 ∈ V)
1110adantr 483 . . . . . . 7 ((𝐵𝐶 𝐴 = 𝐵) → 𝐵 ∈ V)
129, 11eqeltrd 2913 . . . . . 6 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 ∈ V)
13 uniexb 7480 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
1412, 13sylibr 236 . . . . 5 ((𝐵𝐶 𝐴 = 𝐵) → 𝐴 ∈ V)
15 simpl 485 . . . . 5 ((𝐵𝐶 𝐴 = 𝐵) → 𝐵𝐶)
1614, 15jca 514 . . . 4 ((𝐵𝐶 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐵𝐶))
178, 16syldan 593 . . 3 ((𝐵𝐶𝑋 = 𝑌) → (𝐴 ∈ V ∧ 𝐵𝐶))
1817adantrr 715 . 2 ((𝐵𝐶 ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))) → (𝐴 ∈ V ∧ 𝐵𝐶))
19 unieq 4840 . . . . . 6 (𝑟 = 𝐴 𝑟 = 𝐴)
2019, 6syl6eqr 2874 . . . . 5 (𝑟 = 𝐴 𝑟 = 𝑋)
2120eqeq1d 2823 . . . 4 (𝑟 = 𝐴 → ( 𝑟 = 𝑠𝑋 = 𝑠))
22 raleq 3406 . . . 4 (𝑟 = 𝐴 → (∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥)))
2321, 22anbi12d 632 . . 3 (𝑟 = 𝐴 → (( 𝑟 = 𝑠 ∧ ∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥)) ↔ (𝑋 = 𝑠 ∧ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥))))
24 unieq 4840 . . . . . 6 (𝑠 = 𝐵 𝑠 = 𝐵)
2524, 7syl6eqr 2874 . . . . 5 (𝑠 = 𝐵 𝑠 = 𝑌)
2625eqeq2d 2832 . . . 4 (𝑠 = 𝐵 → (𝑋 = 𝑠𝑋 = 𝑌))
27 ineq1 4181 . . . . . . 7 (𝑠 = 𝐵 → (𝑠 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
2827unieqd 4842 . . . . . 6 (𝑠 = 𝐵 (𝑠 ∩ 𝒫 𝑥) = (𝐵 ∩ 𝒫 𝑥))
2928sseq2d 3999 . . . . 5 (𝑠 = 𝐵 → (𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
3029ralbidv 3197 . . . 4 (𝑠 = 𝐵 → (∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥) ↔ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥)))
3126, 30anbi12d 632 . . 3 (𝑠 = 𝐵 → ((𝑋 = 𝑠 ∧ ∀𝑥𝐴 𝑥 (𝑠 ∩ 𝒫 𝑥)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
32 df-fne 33680 . . 3 Fne = {⟨𝑟, 𝑠⟩ ∣ ( 𝑟 = 𝑠 ∧ ∀𝑥𝑟 𝑥 (𝑠 ∩ 𝒫 𝑥))}
3323, 31, 32brabg 5419 . 2 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
344, 18, 33pm5.21nd 800 1 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴 𝑥 (𝐵 ∩ 𝒫 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  cin 3935  wss 3936  𝒫 cpw 4539   cuni 4832   class class class wbr 5059  Fnecfne 33679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-xp 5556  df-rel 5557  df-fne 33680
This theorem is referenced by:  isfne4  33683
  Copyright terms: Public domain W3C validator