Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   GIF version

Theorem isfne4b 33691
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4b (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))

Proof of Theorem isfne4b
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝐵𝑉𝑋 = 𝑌) → 𝑋 = 𝑌)
2 isfne.1 . . . . . . 7 𝑋 = 𝐴
3 isfne.2 . . . . . . 7 𝑌 = 𝐵
41, 2, 33eqtr3g 2881 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 = 𝐵)
5 uniexg 7468 . . . . . . 7 (𝐵𝑉 𝐵 ∈ V)
65adantr 483 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐵 ∈ V)
74, 6eqeltrd 2915 . . . . 5 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
8 uniexb 7488 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
97, 8sylibr 236 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
10 simpl 485 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐵𝑉)
11 tgss3 21596 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
129, 10, 11syl2anc 586 . . 3 ((𝐵𝑉𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1312pm5.32da 581 . 2 (𝐵𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
142, 3isfne4 33690 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
1513, 14syl6rbbr 292 1 (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938   cuni 4840   class class class wbr 5068  cfv 6357  topGenctg 16713  Fnecfne 33686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-topgen 16719  df-fne 33687
This theorem is referenced by:  fnetr  33701  fneval  33702
  Copyright terms: Public domain W3C validator