MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfsupp Structured version   Visualization version   GIF version

Theorem isfsupp 8320
Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
isfsupp ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))

Proof of Theorem isfsupp
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funeq 5946 . . . 4 (𝑟 = 𝑅 → (Fun 𝑟 ↔ Fun 𝑅))
21adantr 480 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → (Fun 𝑟 ↔ Fun 𝑅))
3 oveq12 6699 . . . 4 ((𝑟 = 𝑅𝑧 = 𝑍) → (𝑟 supp 𝑧) = (𝑅 supp 𝑍))
43eleq1d 2715 . . 3 ((𝑟 = 𝑅𝑧 = 𝑍) → ((𝑟 supp 𝑧) ∈ Fin ↔ (𝑅 supp 𝑍) ∈ Fin))
52, 4anbi12d 747 . 2 ((𝑟 = 𝑅𝑧 = 𝑍) → ((Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin) ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
6 df-fsupp 8317 . 2 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
75, 6brabga 5018 1 ((𝑅𝑉𝑍𝑊) → (𝑅 finSupp 𝑍 ↔ (Fun 𝑅 ∧ (𝑅 supp 𝑍) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  Fun wfun 5920  (class class class)co 6690   supp csupp 7340  Fincfn 7997   finSupp cfsupp 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-rel 5150  df-cnv 5151  df-co 5152  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-fsupp 8317
This theorem is referenced by:  funisfsupp  8321  fsuppimp  8322  fdmfifsupp  8326  fczfsuppd  8334  fsuppmptif  8346  fsuppco2  8349  fsuppcor  8350  gsumzadd  18368  gsumpt  18407  gsum2dlem2  18416  gsum2d  18417  gsum2d2lem  18418  rmfsupp  42480  mndpfsupp  42482  scmfsupp  42484  mptcfsupp  42486
  Copyright terms: Public domain W3C validator