MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfusgr Structured version   Visualization version   GIF version

Theorem isfusgr 27103
Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020.) (Revised by AV, 21-Oct-2020.)
Hypothesis
Ref Expression
isfusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isfusgr (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))

Proof of Theorem isfusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6673 . . . 4 (𝑔 = 𝐺 → (Vtx‘𝑔) = (Vtx‘𝐺))
2 isfusgr.v . . . 4 𝑉 = (Vtx‘𝐺)
31, 2syl6eqr 2877 . . 3 (𝑔 = 𝐺 → (Vtx‘𝑔) = 𝑉)
43eleq1d 2900 . 2 (𝑔 = 𝐺 → ((Vtx‘𝑔) ∈ Fin ↔ 𝑉 ∈ Fin))
5 df-fusgr 27102 . 2 FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin}
64, 5elrab2 3686 1 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  cfv 6358  Fincfn 8512  Vtxcvtx 26784  USGraphcusgr 26937  FinUSGraphcfusgr 27101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-fusgr 27102
This theorem is referenced by:  fusgrvtxfi  27104  isfusgrf1  27105  isfusgrcl  27106  fusgrusgr  27107  opfusgr  27108  fusgredgfi  27110  fusgrfis  27115  cusgrsizeindslem  27236  cusgrsizeinds  27237  sizusglecusglem2  27247  fusgrmaxsize  27249  finrusgrfusgr  27350  rusgrnumwwlks  27756  rusgrnumwwlk  27757  frrusgrord0lem  28121  frrusgrord0  28122  clwlknon2num  28150  numclwlk1lem1  28151  numclwlk1lem2  28152  friendshipgt3  28180
  Copyright terms: Public domain W3C validator