MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isglbd Structured version   Visualization version   GIF version

Theorem isglbd 17057
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.)
Hypotheses
Ref Expression
isglbd.b 𝐵 = (Base‘𝐾)
isglbd.l = (le‘𝐾)
isglbd.g 𝐺 = (glb‘𝐾)
isglbd.1 ((𝜑𝑦𝑆) → 𝐻 𝑦)
isglbd.2 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
isglbd.3 (𝜑𝐾 ∈ CLat)
isglbd.4 (𝜑𝑆𝐵)
isglbd.5 (𝜑𝐻𝐵)
Assertion
Ref Expression
isglbd (𝜑 → (𝐺𝑆) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isglbd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 isglbd.b . . 3 𝐵 = (Base‘𝐾)
2 isglbd.l . . 3 = (le‘𝐾)
3 isglbd.g . . 3 𝐺 = (glb‘𝐾)
4 biid 251 . . 3 ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
5 isglbd.3 . . 3 (𝜑𝐾 ∈ CLat)
6 isglbd.4 . . 3 (𝜑𝑆𝐵)
71, 2, 3, 4, 5, 6glbval 16937 . 2 (𝜑 → (𝐺𝑆) = (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))))
8 isglbd.1 . . . 4 ((𝜑𝑦𝑆) → 𝐻 𝑦)
98ralrimiva 2962 . . 3 (𝜑 → ∀𝑦𝑆 𝐻 𝑦)
10 isglbd.2 . . . . 5 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
11103exp 1261 . . . 4 (𝜑 → (𝑥𝐵 → (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
1211ralrimiv 2961 . . 3 (𝜑 → ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))
13 isglbd.5 . . . 4 (𝜑𝐻𝐵)
141, 3clatglbcl2 17055 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
155, 6, 14syl2anc 692 . . . . 5 (𝜑𝑆 ∈ dom 𝐺)
161, 2, 3, 4, 5, 15glbeu 16936 . . . 4 (𝜑 → ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
17 breq1 4626 . . . . . . 7 ( = 𝐻 → ( 𝑦𝐻 𝑦))
1817ralbidv 2982 . . . . . 6 ( = 𝐻 → (∀𝑦𝑆 𝑦 ↔ ∀𝑦𝑆 𝐻 𝑦))
19 breq2 4627 . . . . . . . 8 ( = 𝐻 → (𝑥 𝑥 𝐻))
2019imbi2d 330 . . . . . . 7 ( = 𝐻 → ((∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2120ralbidv 2982 . . . . . 6 ( = 𝐻 → (∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2218, 21anbi12d 746 . . . . 5 ( = 𝐻 → ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))))
2322riota2 6598 . . . 4 ((𝐻𝐵 ∧ ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
2413, 16, 23syl2anc 692 . . 3 (𝜑 → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
259, 12, 24mpbi2and 955 . 2 (𝜑 → (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻)
267, 25eqtrd 2655 1 (𝜑 → (𝐺𝑆) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2908  ∃!wreu 2910  wss 3560   class class class wbr 4623  dom cdm 5084  cfv 5857  crio 6575  Basecbs 15800  lecple 15888  glbcglb 16883  CLatccla 17047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-glb 16915  df-clat 17048
This theorem is referenced by:  dihglblem2N  36102
  Copyright terms: Public domain W3C validator