MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd2 Structured version   Visualization version   GIF version

Theorem isgrpd2 18122
Description: Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2821, but we make an exception for theorems such as isgrpd2 18122, ismndd 17932, and islmodd 19639 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b (𝜑𝐵 = (Base‘𝐺))
isgrpd2.p (𝜑+ = (+g𝐺))
isgrpd2.z (𝜑0 = (0g𝐺))
isgrpd2.g (𝜑𝐺 ∈ Mnd)
isgrpd2.n ((𝜑𝑥𝐵) → 𝑁𝐵)
isgrpd2.j ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
Assertion
Ref Expression
isgrpd2 (𝜑𝐺 ∈ Grp)
Distinct variable groups:   𝑥, +   𝑥,𝐵   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝑁(𝑥)   0 (𝑥)

Proof of Theorem isgrpd2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isgrpd2.b . 2 (𝜑𝐵 = (Base‘𝐺))
2 isgrpd2.p . 2 (𝜑+ = (+g𝐺))
3 isgrpd2.z . 2 (𝜑0 = (0g𝐺))
4 isgrpd2.g . 2 (𝜑𝐺 ∈ Mnd)
5 isgrpd2.n . . 3 ((𝜑𝑥𝐵) → 𝑁𝐵)
6 isgrpd2.j . . 3 ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )
7 oveq1 7162 . . . . 5 (𝑦 = 𝑁 → (𝑦 + 𝑥) = (𝑁 + 𝑥))
87eqeq1d 2823 . . . 4 (𝑦 = 𝑁 → ((𝑦 + 𝑥) = 0 ↔ (𝑁 + 𝑥) = 0 ))
98rspcev 3622 . . 3 ((𝑁𝐵 ∧ (𝑁 + 𝑥) = 0 ) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
105, 6, 9syl2anc 586 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )
111, 2, 3, 4, 10isgrpd2e 18121 1 (𝜑𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wrex 3139  cfv 6354  (class class class)co 7155  Basecbs 16482  +gcplusg 16564  0gc0g 16712  Mndcmnd 17910  Grpcgrp 18102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-iota 6313  df-fv 6362  df-ov 7158  df-grp 18105
This theorem is referenced by:  prdsgrpd  18208  oppggrp  18484
  Copyright terms: Public domain W3C validator