MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus3 Structured version   Visualization version   GIF version

Theorem ishaus3 21674
Description: A topological space is Hausdorff iff it is both T0 and R1 (where R1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
ishaus3 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))

Proof of Theorem ishaus3
StepHypRef Expression
1 haust1 21204 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 t1t0 21200 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
31, 2syl 17 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Kol2)
4 haushmph 21643 . 2 (𝐽 ≃ (KQ‘𝐽) → (𝐽 ∈ Haus → (KQ‘𝐽) ∈ Haus))
5 haushmph 21643 . 2 ((KQ‘𝐽) ≃ 𝐽 → ((KQ‘𝐽) ∈ Haus → 𝐽 ∈ Haus))
63, 4, 5ist1-5lem 21671 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Kol2 ∧ (KQ‘𝐽) ∈ Haus))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  wcel 2030  cfv 5926  Kol2ct0 21158  Frect1 21159  Hauscha 21160  KQckq 21544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-1o 7605  df-map 7901  df-topgen 16151  df-qtop 16214  df-top 20747  df-topon 20764  df-cld 20871  df-cn 21079  df-t0 21165  df-t1 21166  df-haus 21167  df-kq 21545  df-hmeo 21606  df-hmph 21607
This theorem is referenced by:  reghaus  21676
  Copyright terms: Public domain W3C validator