MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl Structured version   Visualization version   GIF version

Theorem ishl 23081
Description: The predicate "is a subcomplex Hilbert space." A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
ishl (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))

Proof of Theorem ishl
StepHypRef Expression
1 df-hl 23057 . 2 ℂHil = (Ban ∩ ℂPreHil)
21elin2 3784 1 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wcel 1987  ℂPreHilccph 22889  Bancbn 23053  ℂHilchl 23054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3191  df-in 3566  df-hl 23057
This theorem is referenced by:  hlbn  23082  hlcph  23083  ishl2  23089
  Copyright terms: Public domain W3C validator