MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl2 Structured version   Visualization version   GIF version

Theorem ishl2 23147
Description: A Hilbert space is a complete subcomplex pre-Hilbert space over or . (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
hlress.f 𝐹 = (Scalar‘𝑊)
hlress.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ishl2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))

Proof of Theorem ishl2
StepHypRef Expression
1 ishl 23139 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
2 df-3an 1038 . . 3 ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil))
3 3ancomb 1045 . . 3 ((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ} ∧ 𝑊 ∈ ℂPreHil))
4 cphnvc 22957 . . . . . 6 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec)
5 hlress.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
65isbn 23116 . . . . . . . 8 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
7 3anass 1040 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
86, 7bitri 264 . . . . . . 7 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
98baib 943 . . . . . 6 (𝑊 ∈ NrmVec → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
104, 9syl 17 . . . . 5 (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)))
11 hlress.k . . . . . . . . 9 𝐾 = (Base‘𝐹)
125, 11cphsca 22960 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝐹 = (ℂflds 𝐾))
1312eleq1d 2684 . . . . . . 7 (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ (ℂflds 𝐾) ∈ CMetSp))
145, 11cphsubrg 22961 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝐾 ∈ (SubRing‘ℂfld))
15 cphlvec 22956 . . . . . . . . . . 11 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec)
165lvecdrng 19086 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
1715, 16syl 17 . . . . . . . . . 10 (𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing)
1812, 17eqeltrrd 2700 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → (ℂflds 𝐾) ∈ DivRing)
19 eqid 2620 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
2019cncdrg 23136 . . . . . . . . . 10 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing ∧ (ℂflds 𝐾) ∈ CMetSp) → 𝐾 ∈ {ℝ, ℂ})
21203expia 1265 . . . . . . . . 9 ((𝐾 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝐾) ∈ DivRing) → ((ℂflds 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ}))
2214, 18, 21syl2anc 692 . . . . . . . 8 (𝑊 ∈ ℂPreHil → ((ℂflds 𝐾) ∈ CMetSp → 𝐾 ∈ {ℝ, ℂ}))
23 elpri 4188 . . . . . . . . 9 (𝐾 ∈ {ℝ, ℂ} → (𝐾 = ℝ ∨ 𝐾 = ℂ))
24 oveq2 6643 . . . . . . . . . . 11 (𝐾 = ℝ → (ℂflds 𝐾) = (ℂflds ℝ))
25 eqid 2620 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2625recld2 22598 . . . . . . . . . . . 12 ℝ ∈ (Clsd‘(TopOpen‘ℂfld))
27 cncms 23132 . . . . . . . . . . . . 13 fld ∈ CMetSp
28 ax-resscn 9978 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
29 eqid 2620 . . . . . . . . . . . . . 14 (ℂflds ℝ) = (ℂflds ℝ)
30 cnfldbas 19731 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
3129, 30, 25cmsss 23128 . . . . . . . . . . . . 13 ((ℂfld ∈ CMetSp ∧ ℝ ⊆ ℂ) → ((ℂflds ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld))))
3227, 28, 31mp2an 707 . . . . . . . . . . . 12 ((ℂflds ℝ) ∈ CMetSp ↔ ℝ ∈ (Clsd‘(TopOpen‘ℂfld)))
3326, 32mpbir 221 . . . . . . . . . . 11 (ℂflds ℝ) ∈ CMetSp
3424, 33syl6eqel 2707 . . . . . . . . . 10 (𝐾 = ℝ → (ℂflds 𝐾) ∈ CMetSp)
35 oveq2 6643 . . . . . . . . . . 11 (𝐾 = ℂ → (ℂflds 𝐾) = (ℂflds ℂ))
3630ressid 15916 . . . . . . . . . . . . 13 (ℂfld ∈ CMetSp → (ℂflds ℂ) = ℂfld)
3727, 36ax-mp 5 . . . . . . . . . . . 12 (ℂflds ℂ) = ℂfld
3837, 27eqeltri 2695 . . . . . . . . . . 11 (ℂflds ℂ) ∈ CMetSp
3935, 38syl6eqel 2707 . . . . . . . . . 10 (𝐾 = ℂ → (ℂflds 𝐾) ∈ CMetSp)
4034, 39jaoi 394 . . . . . . . . 9 ((𝐾 = ℝ ∨ 𝐾 = ℂ) → (ℂflds 𝐾) ∈ CMetSp)
4123, 40syl 17 . . . . . . . 8 (𝐾 ∈ {ℝ, ℂ} → (ℂflds 𝐾) ∈ CMetSp)
4222, 41impbid1 215 . . . . . . 7 (𝑊 ∈ ℂPreHil → ((ℂflds 𝐾) ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ}))
4313, 42bitrd 268 . . . . . 6 (𝑊 ∈ ℂPreHil → (𝐹 ∈ CMetSp ↔ 𝐾 ∈ {ℝ, ℂ}))
4443anbi2d 739 . . . . 5 (𝑊 ∈ ℂPreHil → ((𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ})))
4510, 44bitrd 268 . . . 4 (𝑊 ∈ ℂPreHil → (𝑊 ∈ Ban ↔ (𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ})))
4645pm5.32ri 669 . . 3 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ ((𝑊 ∈ CMetSp ∧ 𝐾 ∈ {ℝ, ℂ}) ∧ 𝑊 ∈ ℂPreHil))
472, 3, 463bitr4ri 293 . 2 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
481, 47bitri 264 1 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil ∧ 𝐾 ∈ {ℝ, ℂ}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wss 3567  {cpr 4170  cfv 5876  (class class class)co 6635  cc 9919  cr 9920  Basecbs 15838  s cress 15839  Scalarcsca 15925  TopOpenctopn 16063  DivRingcdr 18728  SubRingcsubrg 18757  LVecclvec 19083  fldccnfld 19727  Clsdccld 20801  NrmVeccnvc 22367  ℂPreHilccph 22947  CMetSpccms 23110  Bancbn 23111  ℂHilchl 23112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-tpos 7337  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-grp 17406  df-minusg 17407  df-mulg 17522  df-subg 17572  df-cntz 17731  df-cmn 18176  df-mgp 18471  df-ur 18483  df-ring 18530  df-cring 18531  df-oppr 18604  df-dvdsr 18622  df-unit 18623  df-invr 18653  df-dvr 18664  df-drng 18730  df-subrg 18759  df-lvec 19084  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-phl 19952  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-cn 21012  df-cnp 21013  df-haus 21100  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-fil 21631  df-flim 21724  df-fcls 21726  df-xms 22106  df-ms 22107  df-tms 22108  df-nvc 22373  df-cncf 22662  df-cph 22949  df-cfil 23034  df-cmet 23036  df-cms 23113  df-bn 23114  df-hl 23115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator