Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat1 Structured version   Visualization version   GIF version

Theorem ishlat1 36482
Description: The predicate "is a Hilbert lattice", which is: is orthomodular (𝐾 ∈ OML), complete (𝐾 ∈ CLat), atomic and satisfies the exchange (or covering) property (𝐾 ∈ CvLat), satisfies the superposition principle, and has a minimum height of 4 (witnessed here by 0, x, y, z, 1). (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6665 . . . . . 6 (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾))
2 ishlat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
31, 2syl6eqr 2874 . . . . 5 (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴)
4 fveq2 6665 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
5 ishlat.l . . . . . . . . . . . 12 = (le‘𝐾)
64, 5syl6eqr 2874 . . . . . . . . . . 11 (𝑘 = 𝐾 → (le‘𝑘) = )
76breqd 5070 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥(join‘𝑘)𝑦)))
8 fveq2 6665 . . . . . . . . . . . . 13 (𝑘 = 𝐾 → (join‘𝑘) = (join‘𝐾))
9 ishlat.j . . . . . . . . . . . . 13 = (join‘𝐾)
108, 9syl6eqr 2874 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (join‘𝑘) = )
1110oveqd 7167 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑥(join‘𝑘)𝑦) = (𝑥 𝑦))
1211breq2d 5071 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 (𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
137, 12bitrd 281 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦) ↔ 𝑧 (𝑥 𝑦)))
14133anbi3d 1438 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
153, 14rexeqbidv 3403 . . . . . . 7 (𝑘 = 𝐾 → (∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦)) ↔ ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))))
1615imbi2d 343 . . . . . 6 (𝑘 = 𝐾 → ((𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
173, 16raleqbidv 3402 . . . . 5 (𝑘 = 𝐾 → (∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
183, 17raleqbidv 3402 . . . 4 (𝑘 = 𝐾 → (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))))
19 fveq2 6665 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
20 ishlat.b . . . . . 6 𝐵 = (Base‘𝐾)
2119, 20syl6eqr 2874 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
22 fveq2 6665 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (lt‘𝑘) = (lt‘𝐾))
23 ishlat.s . . . . . . . . . . . 12 < = (lt‘𝐾)
2422, 23syl6eqr 2874 . . . . . . . . . . 11 (𝑘 = 𝐾 → (lt‘𝑘) = < )
2524breqd 5070 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥 ↔ (0.‘𝑘) < 𝑥))
26 fveq2 6665 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (0.‘𝑘) = (0.‘𝐾))
27 ishlat.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
2826, 27syl6eqr 2874 . . . . . . . . . . 11 (𝑘 = 𝐾 → (0.‘𝑘) = 0 )
2928breq1d 5069 . . . . . . . . . 10 (𝑘 = 𝐾 → ((0.‘𝑘) < 𝑥0 < 𝑥))
3025, 29bitrd 281 . . . . . . . . 9 (𝑘 = 𝐾 → ((0.‘𝑘)(lt‘𝑘)𝑥0 < 𝑥))
3124breqd 5070 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑥(lt‘𝑘)𝑦𝑥 < 𝑦))
3230, 31anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → (((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ↔ ( 0 < 𝑥𝑥 < 𝑦)))
3324breqd 5070 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑦(lt‘𝑘)𝑧𝑦 < 𝑧))
3424breqd 5070 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < (1.‘𝑘)))
35 fveq2 6665 . . . . . . . . . . . 12 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
36 ishlat.u . . . . . . . . . . . 12 1 = (1.‘𝐾)
3735, 36syl6eqr 2874 . . . . . . . . . . 11 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
3837breq2d 5071 . . . . . . . . . 10 (𝑘 = 𝐾 → (𝑧 < (1.‘𝑘) ↔ 𝑧 < 1 ))
3934, 38bitrd 281 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑧(lt‘𝑘)(1.‘𝑘) ↔ 𝑧 < 1 ))
4033, 39anbi12d 632 . . . . . . . 8 (𝑘 = 𝐾 → ((𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)) ↔ (𝑦 < 𝑧𝑧 < 1 )))
4132, 40anbi12d 632 . . . . . . 7 (𝑘 = 𝐾 → ((((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4221, 41rexeqbidv 3403 . . . . . 6 (𝑘 = 𝐾 → (∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4321, 42rexeqbidv 3403 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4421, 43rexeqbidv 3403 . . . 4 (𝑘 = 𝐾 → (∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))) ↔ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
4518, 44anbi12d 632 . . 3 (𝑘 = 𝐾 → ((∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘)))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
46 df-hlat 36481 . . 3 HL = {𝑘 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑥 ∈ (Atoms‘𝑘)∀𝑦 ∈ (Atoms‘𝑘)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝑘)(𝑧𝑥𝑧𝑦𝑧(le‘𝑘)(𝑥(join‘𝑘)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝑘)∃𝑦 ∈ (Base‘𝑘)∃𝑧 ∈ (Base‘𝑘)(((0.‘𝑘)(lt‘𝑘)𝑥𝑥(lt‘𝑘)𝑦) ∧ (𝑦(lt‘𝑘)𝑧𝑧(lt‘𝑘)(1.‘𝑘))))}
4745, 46elrab2 3683 . 2 (𝐾 ∈ HL ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
48 elin 4169 . . . . 5 (𝐾 ∈ (OML ∩ CLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat))
4948anbi1i 625 . . . 4 ((𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
50 elin 4169 . . . 4 (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ↔ (𝐾 ∈ (OML ∩ CLat) ∧ 𝐾 ∈ CvLat))
51 df-3an 1085 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ CvLat))
5249, 50, 513bitr4ri 306 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ 𝐾 ∈ ((OML ∩ CLat) ∩ CvLat))
5352anbi1i 625 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (𝐾 ∈ ((OML ∩ CLat) ∩ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
5447, 53bitr4i 280 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cin 3935   class class class wbr 5059  cfv 6350  (class class class)co 7150  Basecbs 16477  lecple 16566  ltcplt 17545  joincjn 17548  0.cp0 17641  1.cp1 17642  CLatccla 17711  OMLcoml 36305  Atomscatm 36393  CvLatclc 36395  HLchlt 36480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-iota 6309  df-fv 6358  df-ov 7153  df-hlat 36481
This theorem is referenced by:  ishlat2  36483  ishlat3N  36484  hlomcmcv  36486
  Copyright terms: Public domain W3C validator