MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpy Structured version   Visualization version   GIF version

Theorem ishtpy 23570
Description: Membership in the class of homotopies between two continuous functions. (Contributed by Mario Carneiro, 22-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
ishtpy (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠   𝑋,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem ishtpy
Dummy variables 𝑓 𝑔 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-htpy 23568 . . . . . 6 Htpy = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
21a1i 11 . . . . 5 (𝜑 → Htpy = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))})))
3 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
4 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
53, 4oveq12d 7168 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾))
63oveq1d 7165 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑗 ×t II) = (𝐽 ×t II))
76, 4oveq12d 7168 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ((𝑗 ×t II) Cn 𝑘) = ((𝐽 ×t II) Cn 𝐾))
83unieqd 4841 . . . . . . . . 9 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
9 ishtpy.1 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
10 toponuni 21516 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
119, 10syl 17 . . . . . . . . . 10 (𝜑𝑋 = 𝐽)
1211adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
138, 12eqtr4d 2859 . . . . . . . 8 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
1413raleqdv 3415 . . . . . . 7 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))))
157, 14rabeqbidv 3485 . . . . . 6 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} = { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))})
165, 5, 15mpoeq123dv 7223 . . . . 5 ((𝜑 ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ { ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 𝑗((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
17 topontop 21515 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
189, 17syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
19 ishtpy.3 . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
20 cntop2 21843 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2119, 20syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
22 ovex 7183 . . . . . . . . . 10 ((𝐽 ×t II) Cn 𝐾) ∈ V
23 ssrab2 4055 . . . . . . . . . 10 { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ⊆ ((𝐽 ×t II) Cn 𝐾)
2422, 23elpwi2 5241 . . . . . . . . 9 { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾)
2524rgen2w 3151 . . . . . . . 8 𝑓 ∈ (𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾)
26 eqid 2821 . . . . . . . . 9 (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))})
2726fmpo 7760 . . . . . . . 8 (∀𝑓 ∈ (𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾))
2825, 27mpbi 232 . . . . . . 7 (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾)
29 ovex 7183 . . . . . . . 8 (𝐽 Cn 𝐾) ∈ V
3029, 29xpex 7470 . . . . . . 7 ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V
3122pwex 5273 . . . . . . 7 𝒫 ((𝐽 ×t II) Cn 𝐾) ∈ V
32 fex2 7632 . . . . . . 7 (((𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾) ∧ ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V ∧ 𝒫 ((𝐽 ×t II) Cn 𝐾) ∈ V) → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) ∈ V)
3328, 30, 31, 32mp3an 1457 . . . . . 6 (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}) ∈ V)
352, 16, 18, 21, 34ovmpod 7296 . . . 4 (𝜑 → (𝐽 Htpy 𝐾) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
36 fveq1 6663 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑠) = (𝐹𝑠))
3736eqeq2d 2832 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑠0) = (𝑓𝑠) ↔ (𝑠0) = (𝐹𝑠)))
38 fveq1 6663 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑔𝑠) = (𝐺𝑠))
3938eqeq2d 2832 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑠1) = (𝑔𝑠) ↔ (𝑠1) = (𝐺𝑠)))
4037, 39bi2anan9 637 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))))
4140adantl 484 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))))
4241ralbidv 3197 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠)) ↔ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))))
4342rabbidv 3480 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))} = { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))})
44 ishtpy.4 . . . 4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
4522rabex 5227 . . . . 5 { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))} ∈ V
4645a1i 11 . . . 4 (𝜑 → { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))} ∈ V)
4735, 43, 19, 44, 46ovmpod 7296 . . 3 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) = { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))})
4847eleq2d 2898 . 2 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ 𝐻 ∈ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))}))
49 oveq 7156 . . . . . 6 ( = 𝐻 → (𝑠0) = (𝑠𝐻0))
5049eqeq1d 2823 . . . . 5 ( = 𝐻 → ((𝑠0) = (𝐹𝑠) ↔ (𝑠𝐻0) = (𝐹𝑠)))
51 oveq 7156 . . . . . 6 ( = 𝐻 → (𝑠1) = (𝑠𝐻1))
5251eqeq1d 2823 . . . . 5 ( = 𝐻 → ((𝑠1) = (𝐺𝑠) ↔ (𝑠𝐻1) = (𝐺𝑠)))
5350, 52anbi12d 632 . . . 4 ( = 𝐻 → (((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)) ↔ ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
5453ralbidv 3197 . . 3 ( = 𝐻 → (∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠)) ↔ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
5554elrab 3679 . 2 (𝐻 ∈ { ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠𝑋 ((𝑠0) = (𝐹𝑠) ∧ (𝑠1) = (𝐺𝑠))} ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠))))
5648, 55syl6bb 289 1 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  𝒫 cpw 4538   cuni 4831   × cxp 5547  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  0cc0 10531  1c1 10532  Topctop 21495  TopOnctopon 21512   Cn ccn 21826   ×t ctx 22162  IIcii 23477   Htpy chtpy 23565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-map 8402  df-top 21496  df-topon 21513  df-cn 21829  df-htpy 23568
This theorem is referenced by:  htpycn  23571  htpyi  23572  ishtpyd  23573
  Copyright terms: Public domain W3C validator