Step | Hyp | Ref
| Expression |
1 | | df-htpy 22962 |
. . . . . 6
⊢ Htpy =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → Htpy = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}))) |
3 | | simprl 811 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) |
4 | | simprr 813 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) |
5 | 3, 4 | oveq12d 6823 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑗 Cn 𝑘) = (𝐽 Cn 𝐾)) |
6 | 3 | oveq1d 6820 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑗 ×t II) = (𝐽 ×t II)) |
7 | 6, 4 | oveq12d 6823 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ((𝑗 ×t II) Cn 𝑘) = ((𝐽 ×t II) Cn 𝐾)) |
8 | 3 | unieqd 4590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) |
9 | | ishtpy.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
10 | | toponuni 20913 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
12 | 11 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) |
13 | 8, 12 | eqtr4d 2789 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) |
14 | 13 | raleqdv 3275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)))) |
15 | 7, 14 | rabeqbidv 3327 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} = {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) |
16 | 5, 5, 15 | mpt2eq123dv 6874 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑓 ∈ (𝑗 Cn 𝑘), 𝑔 ∈ (𝑗 Cn 𝑘) ↦ {ℎ ∈ ((𝑗 ×t II) Cn 𝑘) ∣ ∀𝑠 ∈ ∪ 𝑗((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
17 | | topontop 20912 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
18 | 9, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
19 | | ishtpy.3 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
20 | | cntop2 21239 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
21 | 19, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Top) |
22 | | ssrab2 3820 |
. . . . . . . . . 10
⊢ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ⊆ ((𝐽 ×t II) Cn 𝐾) |
23 | | ovex 6833 |
. . . . . . . . . . 11
⊢ ((𝐽 ×t II) Cn
𝐾) ∈
V |
24 | 23 | elpw2 4969 |
. . . . . . . . . 10
⊢ ({ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) ↔ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ⊆ ((𝐽 ×t II) Cn 𝐾)) |
25 | 22, 24 | mpbir 221 |
. . . . . . . . 9
⊢ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) |
26 | 25 | rgen2w 3055 |
. . . . . . . 8
⊢
∀𝑓 ∈
(𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) |
27 | | eqid 2752 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) |
28 | 27 | fmpt2 7397 |
. . . . . . . 8
⊢
(∀𝑓 ∈
(𝐽 Cn 𝐾)∀𝑔 ∈ (𝐽 Cn 𝐾){ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} ∈ 𝒫 ((𝐽 ×t II) Cn 𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾)) |
29 | 26, 28 | mpbi 220 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾) |
30 | | ovex 6833 |
. . . . . . . 8
⊢ (𝐽 Cn 𝐾) ∈ V |
31 | 30, 30 | xpex 7119 |
. . . . . . 7
⊢ ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V |
32 | 23 | pwex 4989 |
. . . . . . 7
⊢ 𝒫
((𝐽 ×t II)
Cn 𝐾) ∈
V |
33 | | fex2 7278 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}):((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾))⟶𝒫 ((𝐽 ×t II) Cn 𝐾) ∧ ((𝐽 Cn 𝐾) × (𝐽 Cn 𝐾)) ∈ V ∧ 𝒫 ((𝐽 ×t II) Cn
𝐾) ∈ V) → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) ∈ V) |
34 | 29, 31, 32, 33 | mp3an 1565 |
. . . . . 6
⊢ (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) ∈ V |
35 | 34 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))}) ∈ V) |
36 | 2, 16, 18, 21, 35 | ovmpt2d 6945 |
. . . 4
⊢ (𝜑 → (𝐽 Htpy 𝐾) = (𝑓 ∈ (𝐽 Cn 𝐾), 𝑔 ∈ (𝐽 Cn 𝐾) ↦ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
37 | | fveq1 6343 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑠) = (𝐹‘𝑠)) |
38 | 37 | eqeq2d 2762 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑠ℎ0) = (𝑓‘𝑠) ↔ (𝑠ℎ0) = (𝐹‘𝑠))) |
39 | | fveq1 6343 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑔‘𝑠) = (𝐺‘𝑠)) |
40 | 39 | eqeq2d 2762 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑠ℎ1) = (𝑔‘𝑠) ↔ (𝑠ℎ1) = (𝐺‘𝑠))) |
41 | 38, 40 | bi2anan9 953 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)))) |
42 | 41 | adantl 473 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)))) |
43 | 42 | ralbidv 3116 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠)) ↔ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)))) |
44 | 43 | rabbidv 3321 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))} = {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))}) |
45 | | ishtpy.4 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
46 | 23 | rabex 4956 |
. . . . 5
⊢ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))} ∈ V |
47 | 46 | a1i 11 |
. . . 4
⊢ (𝜑 → {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))} ∈ V) |
48 | 36, 44, 19, 45, 47 | ovmpt2d 6945 |
. . 3
⊢ (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) = {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))}) |
49 | 48 | eleq2d 2817 |
. 2
⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ 𝐻 ∈ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))})) |
50 | | oveq 6811 |
. . . . . 6
⊢ (ℎ = 𝐻 → (𝑠ℎ0) = (𝑠𝐻0)) |
51 | 50 | eqeq1d 2754 |
. . . . 5
⊢ (ℎ = 𝐻 → ((𝑠ℎ0) = (𝐹‘𝑠) ↔ (𝑠𝐻0) = (𝐹‘𝑠))) |
52 | | oveq 6811 |
. . . . . 6
⊢ (ℎ = 𝐻 → (𝑠ℎ1) = (𝑠𝐻1)) |
53 | 52 | eqeq1d 2754 |
. . . . 5
⊢ (ℎ = 𝐻 → ((𝑠ℎ1) = (𝐺‘𝑠) ↔ (𝑠𝐻1) = (𝐺‘𝑠))) |
54 | 51, 53 | anbi12d 749 |
. . . 4
⊢ (ℎ = 𝐻 → (((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)) ↔ ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
55 | 54 | ralbidv 3116 |
. . 3
⊢ (ℎ = 𝐻 → (∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠)) ↔ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
56 | 55 | elrab 3496 |
. 2
⊢ (𝐻 ∈ {ℎ ∈ ((𝐽 ×t II) Cn 𝐾) ∣ ∀𝑠 ∈ 𝑋 ((𝑠ℎ0) = (𝐹‘𝑠) ∧ (𝑠ℎ1) = (𝐺‘𝑠))} ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠)))) |
57 | 49, 56 | syl6bb 276 |
1
⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |