Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldsys Structured version   Visualization version   GIF version

Theorem isldsys 30528
 Description: The property of being a lambda-system or Dynkin system. Lambda-systems contain the empty set, are closed under complement, and closed under countable disjoint union. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
isldsys (𝑆𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑆))))
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑦)   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem isldsys
StepHypRef Expression
1 eleq2 2828 . . 3 (𝑠 = 𝑆 → (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆))
2 eleq2 2828 . . . 4 (𝑠 = 𝑆 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
32raleqbi1dv 3285 . . 3 (𝑠 = 𝑆 → (∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ↔ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆))
4 pweq 4305 . . . 4 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
5 eleq2 2828 . . . . 5 (𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆))
65imbi2d 329 . . . 4 (𝑠 = 𝑆 → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑆)))
74, 6raleqbidv 3291 . . 3 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑆)))
81, 3, 73anbi123d 1548 . 2 (𝑠 = 𝑆 → ((∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑆))))
9 isldsys.l . 2 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
108, 9elrab2 3507 1 (𝑆𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑆))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054   ∖ cdif 3712  ∅c0 4058  𝒫 cpw 4302  ∪ cuni 4588  Disj wdisj 4772   class class class wbr 4804  ωcom 7230   ≼ cdom 8119 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-in 3722  df-ss 3729  df-pw 4304 This theorem is referenced by:  pwldsys  30529  unelldsys  30530  sigaldsys  30531  ldsysgenld  30532  sigapildsyslem  30533  sigapildsys  30534  ldgenpisyslem1  30535
 Copyright terms: Public domain W3C validator