MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isleag Structured version   Visualization version   GIF version

Theorem isleag 25778
Description: Geometrical "less than" property for angles. Definition 11.27 of [Schwabhauser] p. 102. (Contributed by Thierry Arnoux, 7-Oct-2020.)
Hypotheses
Ref Expression
isleag.p 𝑃 = (Base‘𝐺)
isleag.g (𝜑𝐺 ∈ TarskiG)
isleag.a (𝜑𝐴𝑃)
isleag.b (𝜑𝐵𝑃)
isleag.c (𝜑𝐶𝑃)
isleag.d (𝜑𝐷𝑃)
isleag.e (𝜑𝐸𝑃)
isleag.f (𝜑𝐹𝑃)
Assertion
Ref Expression
isleag (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝑃   𝜑,𝑥

Proof of Theorem isleag
Dummy variables 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isleag.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
2 elex 3243 . . . . 5 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
3 fveq2 6229 . . . . . . . . . . . 12 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 isleag.p . . . . . . . . . . . 12 𝑃 = (Base‘𝐺)
53, 4syl6eqr 2703 . . . . . . . . . . 11 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃)
65oveq1d 6705 . . . . . . . . . 10 (𝑔 = 𝐺 → ((Base‘𝑔) ↑𝑚 (0..^3)) = (𝑃𝑚 (0..^3)))
76eleq2d 2716 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑎 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ↔ 𝑎 ∈ (𝑃𝑚 (0..^3))))
86eleq2d 2716 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑏 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ↔ 𝑏 ∈ (𝑃𝑚 (0..^3))))
97, 8anbi12d 747 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑎 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ↔ (𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3)))))
10 fveq2 6229 . . . . . . . . . . 11 (𝑔 = 𝐺 → (inA‘𝑔) = (inA‘𝐺))
1110breqd 4696 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩))
12 fveq2 6229 . . . . . . . . . . 11 (𝑔 = 𝐺 → (cgrA‘𝑔) = (cgrA‘𝐺))
1312breqd 4696 . . . . . . . . . 10 (𝑔 = 𝐺 → (⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ ↔ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))
1411, 13anbi12d 747 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)))
155, 14rexeqbidv 3183 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)))
169, 15anbi12d 747 . . . . . . 7 (𝑔 = 𝐺 → (((𝑎 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩)) ↔ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))))
1716opabbidv 4749 . . . . . 6 (𝑔 = 𝐺 → {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
18 df-leag 25777 . . . . . 6 = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑𝑚 (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑𝑚 (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
19 ovex 6718 . . . . . . . 8 (𝑃𝑚 (0..^3)) ∈ V
20 xpexg 7002 . . . . . . . 8 (((𝑃𝑚 (0..^3)) ∈ V ∧ (𝑃𝑚 (0..^3)) ∈ V) → ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3))) ∈ V)
2119, 19, 20mp2an 708 . . . . . . 7 ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3))) ∈ V
22 opabssxp 5227 . . . . . . 7 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} ⊆ ((𝑃𝑚 (0..^3)) × (𝑃𝑚 (0..^3)))
2321, 22ssexi 4836 . . . . . 6 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} ∈ V
2417, 18, 23fvmpt 6321 . . . . 5 (𝐺 ∈ V → (≤𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
251, 2, 243syl 18 . . . 4 (𝜑 → (≤𝐺) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
2625breqd 4696 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩))
27 simpr 476 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑏 = ⟨“𝐷𝐸𝐹”⟩)
2827fveq1d 6231 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘0) = (⟨“𝐷𝐸𝐹”⟩‘0))
2927fveq1d 6231 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘1) = (⟨“𝐷𝐸𝐹”⟩‘1))
3027fveq1d 6231 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑏‘2) = (⟨“𝐷𝐸𝐹”⟩‘2))
3128, 29, 30s3eqd 13655 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ = ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩)
3231breq2d 4697 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩))
33 simpl 472 . . . . . . . . . 10 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑎 = ⟨“𝐴𝐵𝐶”⟩)
3433fveq1d 6231 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘0) = (⟨“𝐴𝐵𝐶”⟩‘0))
3533fveq1d 6231 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘1) = (⟨“𝐴𝐵𝐶”⟩‘1))
3633fveq1d 6231 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (𝑎‘2) = (⟨“𝐴𝐵𝐶”⟩‘2))
3734, 35, 36s3eqd 13655 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩ = ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩)
38 eqidd 2652 . . . . . . . . 9 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → 𝑥 = 𝑥)
3928, 29, 38s3eqd 13655 . . . . . . . 8 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ = ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)
4037, 39breq12d 4698 . . . . . . 7 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩ ↔ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩))
4132, 40anbi12d 747 . . . . . 6 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → ((𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
4241rexbidv 3081 . . . . 5 ((𝑎 = ⟨“𝐴𝐵𝐶”⟩ ∧ 𝑏 = ⟨“𝐷𝐸𝐹”⟩) → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
43 eqid 2651 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}
4442, 43brab2a 5228 . . . 4 (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)))
4544a1i 11 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩{⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝑚 (0..^3)) ∧ 𝑏 ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝐺)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))}⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩))))
46 isleag.d . . . . . . . . 9 (𝜑𝐷𝑃)
47 s3fv0 13682 . . . . . . . . 9 (𝐷𝑃 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
4846, 47syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘0) = 𝐷)
49 isleag.e . . . . . . . . 9 (𝜑𝐸𝑃)
50 s3fv1 13683 . . . . . . . . 9 (𝐸𝑃 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
5149, 50syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘1) = 𝐸)
52 isleag.f . . . . . . . . 9 (𝜑𝐹𝑃)
53 s3fv2 13684 . . . . . . . . 9 (𝐹𝑃 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
5452, 53syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐷𝐸𝐹”⟩‘2) = 𝐹)
5548, 51, 54s3eqd 13655 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ = ⟨“𝐷𝐸𝐹”⟩)
5655breq2d 4697 . . . . . 6 (𝜑 → (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ↔ 𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩))
57 isleag.a . . . . . . . . 9 (𝜑𝐴𝑃)
58 s3fv0 13682 . . . . . . . . 9 (𝐴𝑃 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
5957, 58syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
60 isleag.b . . . . . . . . 9 (𝜑𝐵𝑃)
61 s3fv1 13683 . . . . . . . . 9 (𝐵𝑃 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
6260, 61syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
63 isleag.c . . . . . . . . 9 (𝜑𝐶𝑃)
64 s3fv2 13684 . . . . . . . . 9 (𝐶𝑃 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
6563, 64syl 17 . . . . . . . 8 (𝜑 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
6659, 62, 65s3eqd 13655 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩ = ⟨“𝐴𝐵𝐶”⟩)
67 eqidd 2652 . . . . . . . 8 (𝜑𝑥 = 𝑥)
6848, 51, 67s3eqd 13655 . . . . . . 7 (𝜑 → ⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩ = ⟨“𝐷𝐸𝑥”⟩)
6966, 68breq12d 4698 . . . . . 6 (𝜑 → (⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))
7056, 69anbi12d 747 . . . . 5 (𝜑 → ((𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩) ↔ (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
7170rexbidv 3081 . . . 4 (𝜑 → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩) ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
7271anbi2d 740 . . 3 (𝜑 → (((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)(⟨“𝐷𝐸𝐹”⟩‘2)”⟩ ∧ ⟨“(⟨“𝐴𝐵𝐶”⟩‘0)(⟨“𝐴𝐵𝐶”⟩‘1)(⟨“𝐴𝐵𝐶”⟩‘2)”⟩(cgrA‘𝐺)⟨“(⟨“𝐷𝐸𝐹”⟩‘0)(⟨“𝐷𝐸𝐹”⟩‘1)𝑥”⟩)) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
7326, 45, 723bitrd 294 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
7457, 60, 63s3cld 13663 . . . . . 6 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃)
75 s3len 13685 . . . . . . 7 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
7675a1i 11 . . . . . 6 (𝜑 → (#‘⟨“𝐴𝐵𝐶”⟩) = 3)
7774, 76jca 553 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3))
78 fvex 6239 . . . . . . 7 (Base‘𝐺) ∈ V
794, 78eqeltri 2726 . . . . . 6 𝑃 ∈ V
80 3nn0 11348 . . . . . 6 3 ∈ ℕ0
81 wrdmap 13368 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3))))
8279, 80, 81mp2an 708 . . . . 5 ((⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐴𝐵𝐶”⟩) = 3) ↔ ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
8377, 82sylib 208 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)))
8446, 49, 52s3cld 13663 . . . . . 6 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃)
85 s3len 13685 . . . . . . 7 (#‘⟨“𝐷𝐸𝐹”⟩) = 3
8685a1i 11 . . . . . 6 (𝜑 → (#‘⟨“𝐷𝐸𝐹”⟩) = 3)
8784, 86jca 553 . . . . 5 (𝜑 → (⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐷𝐸𝐹”⟩) = 3))
88 wrdmap 13368 . . . . . 6 ((𝑃 ∈ V ∧ 3 ∈ ℕ0) → ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))))
8979, 80, 88mp2an 708 . . . . 5 ((⟨“𝐷𝐸𝐹”⟩ ∈ Word 𝑃 ∧ (#‘⟨“𝐷𝐸𝐹”⟩) = 3) ↔ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3)))
9087, 89sylib 208 . . . 4 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3)))
9183, 90jca 553 . . 3 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))))
9291biantrurd 528 . 2 (𝜑 → (∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩) ↔ ((⟨“𝐴𝐵𝐶”⟩ ∈ (𝑃𝑚 (0..^3)) ∧ ⟨“𝐷𝐸𝐹”⟩ ∈ (𝑃𝑚 (0..^3))) ∧ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩))))
9373, 92bitr4d 271 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(≤𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (𝑥(inA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ∧ ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑥”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wrex 2942  Vcvv 3231   class class class wbr 4685  {copab 4745   × cxp 5141  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  0cc0 9974  1c1 9975  2c2 11108  3c3 11109  0cn0 11330  ..^cfzo 12504  #chash 13157  Word cword 13323  ⟨“cs3 13633  Basecbs 15904  TarskiGcstrkg 25374  cgrAccgra 25744  inAcinag 25771  cleag 25772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-leag 25777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator