MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islidl Structured version   Visualization version   GIF version

Theorem islidl 19192
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
islidl.s 𝑈 = (LIdeal‘𝑅)
islidl.b 𝐵 = (Base‘𝑅)
islidl.p + = (+g𝑅)
islidl.t · = (.r𝑅)
Assertion
Ref Expression
islidl (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵   𝐼,𝑎,𝑏,𝑥   𝑅,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑥,𝑎,𝑏)   · (𝑥,𝑎,𝑏)   𝑈(𝑥,𝑎,𝑏)

Proof of Theorem islidl
StepHypRef Expression
1 rlmsca2 19182 . 2 ( I ‘𝑅) = (Scalar‘(ringLMod‘𝑅))
2 baseid 15900 . . 3 Base = Slot (Base‘ndx)
3 islidl.b . . 3 𝐵 = (Base‘𝑅)
42, 3strfvi 15894 . 2 𝐵 = (Base‘( I ‘𝑅))
5 rlmbas 19176 . . 3 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
63, 5eqtri 2642 . 2 𝐵 = (Base‘(ringLMod‘𝑅))
7 islidl.p . . 3 + = (+g𝑅)
8 rlmplusg 19177 . . 3 (+g𝑅) = (+g‘(ringLMod‘𝑅))
97, 8eqtri 2642 . 2 + = (+g‘(ringLMod‘𝑅))
10 islidl.t . . 3 · = (.r𝑅)
11 rlmvsca 19183 . . 3 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2642 . 2 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 islidl.s . . 3 𝑈 = (LIdeal‘𝑅)
14 lidlval 19173 . . 3 (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))
1513, 14eqtri 2642 . 2 𝑈 = (LSubSp‘(ringLMod‘𝑅))
161, 4, 6, 9, 12, 15islss 18916 1 (𝐼𝑈 ↔ (𝐼𝐵𝐼 ≠ ∅ ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎) + 𝑏) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  wss 3567  c0 3907   I cid 5013  cfv 5876  (class class class)co 6635  ndxcnx 15835  Basecbs 15838  +gcplusg 15922  .rcmulr 15923   ·𝑠 cvsca 15926  LSubSpclss 18913  ringLModcrglmod 19150  LIdealclidl 19151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-sca 15938  df-vsca 15939  df-ip 15940  df-lss 18914  df-sra 19153  df-rgmod 19154  df-lidl 19155
This theorem is referenced by:  hbtlem2  37513  2zlidl  41699
  Copyright terms: Public domain W3C validator