Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islindeps2 Structured version   Visualization version   GIF version

Theorem islindeps2 44466
Description: Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islindeps2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islindeps2
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
213adant3 1124 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
32ad3antrrr 726 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵))
4 nzrring 19962 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
5 islindeps2.e . . . . . . . . . . . . . . 15 𝐸 = (Base‘𝑅)
6 eqid 2818 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
75, 6ringidcl 19247 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐸)
84, 7syl 17 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → (1r𝑅) ∈ 𝐸)
983ad2ant3 1127 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (1r𝑅) ∈ 𝐸)
109ad3antrrr 726 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (1r𝑅) ∈ 𝐸)
11 simpllr 772 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑠𝑆)
12 simplr 765 . . . . . . . . . . 11 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠})))
1310, 11, 123jca 1120 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))))
14 simprl 767 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑓 finSupp 0 )
15 islindeps2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑀)
16 islindeps2.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
17 islindeps2.0 . . . . . . . . . . 11 0 = (0g𝑅)
18 islindeps2.z . . . . . . . . . . 11 𝑍 = (0g𝑀)
19 eqid 2818 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
20 eqid 2818 . . . . . . . . . . 11 (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))
2115, 16, 5, 17, 18, 19, 20lincext2 44438 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ 𝑓 finSupp 0 ) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
223, 13, 14, 21syl3anc 1363 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 )
23 simpl1 1183 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑀 ∈ LMod)
24 elelpwi 4550 . . . . . . . . . . . . . . . 16 ((𝑠𝑆𝑆 ∈ 𝒫 𝐵) → 𝑠𝐵)
2524expcom 414 . . . . . . . . . . . . . . 15 (𝑆 ∈ 𝒫 𝐵 → (𝑠𝑆𝑠𝐵))
26253ad2ant2 1126 . . . . . . . . . . . . . 14 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑠𝑆𝑠𝐵))
2726imp 407 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝐵)
28 eqid 2818 . . . . . . . . . . . . . 14 ( ·𝑠𝑀) = ( ·𝑠𝑀)
2915, 16, 28, 6lmodvs1 19591 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑠𝐵) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3023, 27, 29syl2anc 584 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
3130adantr 481 . . . . . . . . . . 11 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) → ((1r𝑅)( ·𝑠𝑀)𝑠) = 𝑠)
32 id 22 . . . . . . . . . . . . 13 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 → (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
3332eqcomd 2824 . . . . . . . . . . . 12 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3433adantl 482 . . . . . . . . . . 11 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑠 = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3531, 34sylan9eq 2873 . . . . . . . . . 10 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))
3615, 16, 5, 17, 18, 19, 20lincext3 44439 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ ((1r𝑅)( ·𝑠𝑀)𝑠) = (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
373, 13, 14, 35, 36syl112anc 1366 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)
3822, 37jca 512 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
39 eqidd 2819 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))))
40 iftrue 4469 . . . . . . . . . . . . 13 (𝑧 = 𝑠 → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
4140adantl 482 . . . . . . . . . . . 12 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑧 = 𝑠) → if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)) = ((invg𝑅)‘(1r𝑅)))
42 simpr 485 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → 𝑠𝑆)
43 fvexd 6678 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ∈ V)
4439, 41, 42, 43fvmptd 6767 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) = ((invg𝑅)‘(1r𝑅)))
45 nzrneg1ne0 44068 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ (0g𝑅))
4617a1i 11 . . . . . . . . . . . . . 14 (𝑅 ∈ NzRing → 0 = (0g𝑅))
4745, 46neeqtrrd 3087 . . . . . . . . . . . . 13 (𝑅 ∈ NzRing → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
48473ad2ant3 1127 . . . . . . . . . . . 12 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
4948adantr 481 . . . . . . . . . . 11 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((invg𝑅)‘(1r𝑅)) ≠ 0 )
5044, 49eqnetrd 3080 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5150adantr 481 . . . . . . . . 9 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5251adantr 481 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )
5315, 16, 5, 17, 18, 19, 20lincext1 44437 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ ((1r𝑅) ∈ 𝐸𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠})))) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸m 𝑆))
543, 13, 53syl2anc 584 . . . . . . . . 9 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) ∈ (𝐸m 𝑆))
55 breq1 5060 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔 finSupp 0 ↔ (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ))
56 oveq1 7152 . . . . . . . . . . . . 13 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔( linC ‘𝑀)𝑆) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆))
5756eqeq1d 2820 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍))
5855, 57anbi12d 630 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍)))
59 fveq1 6662 . . . . . . . . . . . 12 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (𝑔𝑠) = ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠))
6059neeq1d 3072 . . . . . . . . . . 11 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → ((𝑔𝑠) ≠ 0 ↔ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ))
6158, 60anbi12d 630 . . . . . . . . . 10 (𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6261adantl 482 . . . . . . . . 9 ((((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) ∧ 𝑔 = (𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))) → (((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ (((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 )))
6354, 62rspcedv 3613 . . . . . . . 8 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ((((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧))) finSupp 0 ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))( linC ‘𝑀)𝑆) = 𝑍) ∧ ((𝑧𝑆 ↦ if(𝑧 = 𝑠, ((invg𝑅)‘(1r𝑅)), (𝑓𝑧)))‘𝑠) ≠ 0 ) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6438, 52, 63mp2and 695 . . . . . . 7 (((((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) ∧ 𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
6564rexlimdva2 3284 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ 𝑠𝑆) → (∃𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6665reximdva 3271 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 )))
6766imp 407 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
68 df-3an 1081 . . . . . . 7 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
69 r19.42v 3347 . . . . . . 7 (∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7068, 69bitr4i 279 . . . . . 6 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7170rexbii 3244 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
72 rexcom 3352 . . . . 5 (∃𝑔 ∈ (𝐸m 𝑆)∃𝑠𝑆 ((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7371, 72bitri 276 . . . 4 (∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ) ↔ ∃𝑠𝑆𝑔 ∈ (𝐸m 𝑆)((𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍) ∧ (𝑔𝑠) ≠ 0 ))
7467, 73sylibr 235 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 ))
7515, 18, 16, 5, 17islindeps 44436 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
76753adant3 1124 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7776adantr 481 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → (𝑆 linDepS 𝑀 ↔ ∃𝑔 ∈ (𝐸m 𝑆)(𝑔 finSupp 0 ∧ (𝑔( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑠𝑆 (𝑔𝑠) ≠ 0 )))
7874, 77mpbird 258 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) ∧ ∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)) → 𝑆 linDepS 𝑀)
7978ex 413 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  Vcvv 3492  cdif 3930  ifcif 4463  𝒫 cpw 4535  {csn 4557   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  m cmap 8395   finSupp cfsupp 8821  Basecbs 16471  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  invgcminusg 18042  1rcur 19180  Ringcrg 19226  LModclmod 19563  NzRingcnzr 19958   linC clinc 44387   linDepS clindeps 44424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-lmod 19565  df-nzr 19959  df-linc 44389  df-lininds 44425  df-lindeps 44427
This theorem is referenced by:  islininds2  44467  isldepslvec2  44468
  Copyright terms: Public domain W3C validator