MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds3 Structured version   Visualization version   GIF version

Theorem islinds3 20095
Description: A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.)
Hypotheses
Ref Expression
islinds3.b 𝐵 = (Base‘𝑊)
islinds3.k 𝐾 = (LSpan‘𝑊)
islinds3.x 𝑋 = (𝑊s (𝐾𝑌))
islinds3.j 𝐽 = (LBasis‘𝑋)
Assertion
Ref Expression
islinds3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))

Proof of Theorem islinds3
StepHypRef Expression
1 islinds3.b . . . . 5 𝐵 = (Base‘𝑊)
21linds1 20071 . . . 4 (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵)
32a1i 11 . . 3 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) → 𝑌𝐵))
4 eqid 2621 . . . . . . 7 (Base‘𝑋) = (Base‘𝑋)
54linds1 20071 . . . . . 6 (𝑌 ∈ (LIndS‘𝑋) → 𝑌 ⊆ (Base‘𝑋))
6 islinds3.x . . . . . . 7 𝑋 = (𝑊s (𝐾𝑌))
76, 1ressbasss 15856 . . . . . 6 (Base‘𝑋) ⊆ 𝐵
85, 7syl6ss 3596 . . . . 5 (𝑌 ∈ (LIndS‘𝑋) → 𝑌𝐵)
98adantr 481 . . . 4 ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵)
109a1i 11 . . 3 (𝑊 ∈ LMod → ((𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) → 𝑌𝐵))
11 simpl 473 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑊 ∈ LMod)
12 eqid 2621 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
13 islinds3.k . . . . . . . . 9 𝐾 = (LSpan‘𝑊)
141, 12, 13lspcl 18898 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ∈ (LSubSp‘𝑊))
151, 13lspssid 18907 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → 𝑌 ⊆ (𝐾𝑌))
16 eqid 2621 . . . . . . . . 9 (LSpan‘𝑋) = (LSpan‘𝑋)
176, 13, 16, 12lsslsp 18937 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
1811, 14, 15, 17syl3anc 1323 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = ((LSpan‘𝑋)‘𝑌))
191, 13lspssv 18905 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) ⊆ 𝐵)
206, 1ressbas2 15855 . . . . . . . 8 ((𝐾𝑌) ⊆ 𝐵 → (𝐾𝑌) = (Base‘𝑋))
2119, 20syl 17 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝐾𝑌) = (Base‘𝑋))
2218, 21eqtr3d 2657 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))
2322biantrud 528 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2412, 6lsslinds 20092 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐾𝑌) ∈ (LSubSp‘𝑊) ∧ 𝑌 ⊆ (𝐾𝑌)) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2511, 14, 15, 24syl3anc 1323 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑋) ↔ 𝑌 ∈ (LIndS‘𝑊)))
2625bicomd 213 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ (LIndS‘𝑋)))
2726anbi1d 740 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → ((𝑌 ∈ (LIndS‘𝑊) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2823, 27bitrd 268 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐵) → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
2928ex 450 . . 3 (𝑊 ∈ LMod → (𝑌𝐵 → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))))
303, 10, 29pm5.21ndd 369 . 2 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋))))
31 islinds3.j . . 3 𝐽 = (LBasis‘𝑋)
324, 31, 16islbs4 20093 . 2 (𝑌𝐽 ↔ (𝑌 ∈ (LIndS‘𝑋) ∧ ((LSpan‘𝑋)‘𝑌) = (Base‘𝑋)))
3330, 32syl6bbr 278 1 (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wss 3556  cfv 5849  (class class class)co 6607  Basecbs 15784  s cress 15785  LModclmod 18787  LSubSpclss 18854  LSpanclspn 18893  LBasisclbs 18996  LIndSclinds 20066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-ress 15791  df-plusg 15878  df-sca 15881  df-vsca 15882  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-grp 17349  df-minusg 17350  df-sbg 17351  df-subg 17515  df-mgp 18414  df-ur 18426  df-ring 18473  df-lmod 18789  df-lss 18855  df-lsp 18894  df-lbs 18997  df-lindf 20067  df-linds 20068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator