Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isline2 Structured version   Visualization version   GIF version

Theorem isline2 34540
Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
isline2.j = (join‘𝐾)
isline2.a 𝐴 = (Atoms‘𝐾)
isline2.n 𝑁 = (Lines‘𝐾)
isline2.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
isline2 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑀(𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem isline2
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (le‘𝐾) = (le‘𝐾)
2 isline2.j . . 3 = (join‘𝐾)
3 isline2.a . . 3 𝐴 = (Atoms‘𝐾)
4 isline2.n . . 3 𝑁 = (Lines‘𝐾)
51, 2, 3, 4isline 34505 . 2 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})))
6 simpl 473 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → 𝐾 ∈ Lat)
7 eqid 2621 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
87, 3atbase 34056 . . . . . . . 8 (𝑝𝐴𝑝 ∈ (Base‘𝐾))
98ad2antrl 763 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → 𝑝 ∈ (Base‘𝐾))
107, 3atbase 34056 . . . . . . . 8 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
1110ad2antll 764 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → 𝑞 ∈ (Base‘𝐾))
127, 2latjcl 16972 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝 𝑞) ∈ (Base‘𝐾))
136, 9, 11, 12syl3anc 1323 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → (𝑝 𝑞) ∈ (Base‘𝐾))
14 isline2.m . . . . . . 7 𝑀 = (pmap‘𝐾)
157, 1, 3, 14pmapval 34523 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑝 𝑞) ∈ (Base‘𝐾)) → (𝑀‘(𝑝 𝑞)) = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})
1613, 15syldan 487 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → (𝑀‘(𝑝 𝑞)) = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})
1716eqeq2d 2631 . . . 4 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → (𝑋 = (𝑀‘(𝑝 𝑞)) ↔ 𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)}))
1817anbi2d 739 . . 3 ((𝐾 ∈ Lat ∧ (𝑝𝐴𝑞𝐴)) → ((𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞))) ↔ (𝑝𝑞𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})))
19182rexbidva 3049 . 2 (𝐾 ∈ Lat → (∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞))) ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = {𝑟𝐴𝑟(le‘𝐾)(𝑝 𝑞)})))
205, 19bitr4d 271 1 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑀‘(𝑝 𝑞)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  {crab 2911   class class class wbr 4613  cfv 5847  (class class class)co 6604  Basecbs 15781  lecple 15869  joincjn 16865  Latclat 16966  Atomscatm 34030  Linesclines 34260  pmapcpmap 34263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-lat 16967  df-ats 34034  df-lines 34267  df-pmap 34270
This theorem is referenced by:  isline3  34542  lncvrelatN  34547  linepsubclN  34717
  Copyright terms: Public domain W3C validator