Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islininds2 Structured version   Visualization version   GIF version

Theorem islininds2 41516
Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islindeps2.b 𝐵 = (Base‘𝑀)
islindeps2.z 𝑍 = (0g𝑀)
islindeps2.r 𝑅 = (Scalar‘𝑀)
islindeps2.e 𝐸 = (Base‘𝑅)
islindeps2.0 0 = (0g𝑅)
Assertion
Ref Expression
islininds2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
Distinct variable groups:   𝐵,𝑓,𝑠   𝑓,𝐸,𝑠   𝑓,𝑀,𝑠   𝑅,𝑓,𝑠   𝑆,𝑓,𝑠   𝑓,𝑍,𝑠   0 ,𝑓,𝑠

Proof of Theorem islininds2
StepHypRef Expression
1 lindepsnlininds 41484 . . . . 5 ((𝑆 ∈ 𝒫 𝐵𝑀 ∈ LMod) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
21ancoms 469 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
323adant3 1079 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀))
43con2bid 344 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 ↔ ¬ 𝑆 linDepS 𝑀))
5 notnotb 304 . . . . . . . . . 10 (𝑓 finSupp 0 ↔ ¬ ¬ 𝑓 finSupp 0 )
6 nne 2800 . . . . . . . . . . 11 (¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠 ↔ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠)
76bicomi 214 . . . . . . . . . 10 ((𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠 ↔ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)
85, 7anbi12i 732 . . . . . . . . 9 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ (¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
9 pm4.56 516 . . . . . . . . 9 ((¬ ¬ 𝑓 finSupp 0 ∧ ¬ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
108, 9bitri 264 . . . . . . . 8 ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1110rexbii 3039 . . . . . . 7 (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
12 rexnal 2994 . . . . . . 7 (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠})) ¬ (¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1311, 12bitri 264 . . . . . 6 (∃𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1413rexbii 3039 . . . . 5 (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ∃𝑠𝑆 ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
15 rexnal 2994 . . . . 5 (∃𝑠𝑆 ¬ ∀𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) ↔ ¬ ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
1614, 15bitri 264 . . . 4 (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ ¬ ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))
17 islindeps2.b . . . . 5 𝐵 = (Base‘𝑀)
18 islindeps2.z . . . . 5 𝑍 = (0g𝑀)
19 islindeps2.r . . . . 5 𝑅 = (Scalar‘𝑀)
20 islindeps2.e . . . . 5 𝐸 = (Base‘𝑅)
21 islindeps2.0 . . . . 5 0 = (0g𝑅)
2217, 18, 19, 20, 21islindeps2 41515 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (∃𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀))
2316, 22syl5bir 233 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (¬ ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠) → 𝑆 linDepS 𝑀))
2423con1d 139 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (¬ 𝑆 linDepS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
254, 24sylbid 230 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠𝑆𝑓 ∈ (𝐸𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  cdif 3557  𝒫 cpw 4135  {csn 4153   class class class wbr 4618  cfv 5850  (class class class)co 6605  𝑚 cmap 7803   finSupp cfsupp 8220  Basecbs 15776  Scalarcsca 15860  0gc0g 16016  LModclmod 18779  NzRingcnzr 19171   linC clinc 41436   linIndS clininds 41472   linDepS clindeps 41473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-tpos 7298  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-oi 8360  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-seq 12739  df-hash 13055  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-0g 16018  df-gsum 16019  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-grp 17341  df-minusg 17342  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-abl 18112  df-mgp 18406  df-ur 18418  df-ring 18465  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-invr 18588  df-lmod 18781  df-nzr 19172  df-linc 41438  df-lininds 41474  df-lindeps 41476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator