Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln2a Structured version   Visualization version   GIF version

Theorem islln2a 35121
Description: The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
islln2a.j = (join‘𝐾)
islln2a.a 𝐴 = (Atoms‘𝐾)
islln2a.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln2a ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))

Proof of Theorem islln2a
StepHypRef Expression
1 oveq1 6697 . . . . . 6 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 islln2a.j . . . . . . . 8 = (join‘𝐾)
3 islln2a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 34973 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
543adant2 1100 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑄 𝑄) = 𝑄)
61, 5sylan9eqr 2707 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
7 islln2a.n . . . . . . . . . . 11 𝑁 = (LLines‘𝐾)
83, 7llnneat 35118 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
98adantlr 751 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑄𝑁) → ¬ 𝑄𝐴)
109ex 449 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝑁 → ¬ 𝑄𝐴))
1110con2d 129 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑄𝐴 → ¬ 𝑄𝑁))
12113impia 1280 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ¬ 𝑄𝑁)
1312adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ 𝑄𝑁)
146, 13eqneltrd 2749 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃 = 𝑄) → ¬ (𝑃 𝑄) ∈ 𝑁)
1514ex 449 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 = 𝑄 → ¬ (𝑃 𝑄) ∈ 𝑁))
1615necon2ad 2838 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
172, 3, 7llni2 35116 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ 𝑁)
1817ex 449 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃𝑄 → (𝑃 𝑄) ∈ 𝑁))
1916, 18impbid 202 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) ∈ 𝑁𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cfv 5926  (class class class)co 6690  joincjn 16991  Atomscatm 34868  HLchlt 34955  LLinesclln 35095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-preset 16975  df-poset 16993  df-plt 17005  df-lub 17021  df-glb 17022  df-join 17023  df-meet 17024  df-p0 17086  df-lat 17093  df-clat 17155  df-oposet 34781  df-ol 34783  df-oml 34784  df-covers 34871  df-ats 34872  df-atl 34903  df-cvlat 34927  df-hlat 34956  df-llines 35102
This theorem is referenced by:  cdleme16d  35886
  Copyright terms: Public domain W3C validator