Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnm Structured version   Visualization version   GIF version

Theorem islnm 39667
Description: Property of being a Noetherian left module. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypothesis
Ref Expression
islnm.s 𝑆 = (LSubSp‘𝑀)
Assertion
Ref Expression
islnm (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
Distinct variable groups:   𝑖,𝑀   𝑆,𝑖

Proof of Theorem islnm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . 4 (𝑤 = 𝑀 → (LSubSp‘𝑤) = (LSubSp‘𝑀))
2 islnm.s . . . 4 𝑆 = (LSubSp‘𝑀)
31, 2syl6eqr 2872 . . 3 (𝑤 = 𝑀 → (LSubSp‘𝑤) = 𝑆)
4 oveq1 7155 . . . 4 (𝑤 = 𝑀 → (𝑤s 𝑖) = (𝑀s 𝑖))
54eleq1d 2895 . . 3 (𝑤 = 𝑀 → ((𝑤s 𝑖) ∈ LFinGen ↔ (𝑀s 𝑖) ∈ LFinGen))
63, 5raleqbidv 3400 . 2 (𝑤 = 𝑀 → (∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen ↔ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
7 df-lnm 39666 . 2 LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen}
86, 7elrab2 3681 1 (𝑀 ∈ LNoeM ↔ (𝑀 ∈ LMod ∧ ∀𝑖𝑆 (𝑀s 𝑖) ∈ LFinGen))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  cfv 6348  (class class class)co 7148  s cress 16476  LModclmod 19626  LSubSpclss 19695  LFinGenclfig 39657  LNoeMclnm 39665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7151  df-lnm 39666
This theorem is referenced by:  islnm2  39668  lnmlmod  39669  lnmlssfg  39670  lnmlsslnm  39671  lnmepi  39675  lmhmlnmsplit  39677
  Copyright terms: Public domain W3C validator