MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islnopp Structured version   Visualization version   GIF version

Theorem islnopp 25852
Description: The property for two points 𝐴 and 𝐵 to lie on the opposite sides of a set 𝐷 Definition 9.1 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
islnopp.a (𝜑𝐴𝑃)
islnopp.b (𝜑𝐵𝑃)
Assertion
Ref Expression
islnopp (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑡,𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐷(𝑡)   𝑃(𝑡)   𝐺(𝑡,𝑎,𝑏)   𝐼(𝑡)   (𝑡,𝑎,𝑏)   𝑂(𝑡,𝑎,𝑏)

Proof of Theorem islnopp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islnopp.a . . 3 (𝜑𝐴𝑃)
2 islnopp.b . . 3 (𝜑𝐵𝑃)
3 eleq1 2828 . . . . . 6 (𝑢 = 𝐴 → (𝑢 ∈ (𝑃𝐷) ↔ 𝐴 ∈ (𝑃𝐷)))
43anbi1d 743 . . . . 5 (𝑢 = 𝐴 → ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
5 id 22 . . . . . . . 8 (𝑢 = 𝐴𝑢 = 𝐴)
65oveq1d 6830 . . . . . . 7 (𝑢 = 𝐴 → (𝑢𝐼𝑣) = (𝐴𝐼𝑣))
76eleq2d 2826 . . . . . 6 (𝑢 = 𝐴 → (𝑡 ∈ (𝑢𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝑣)))
87rexbidv 3191 . . . . 5 (𝑢 = 𝐴 → (∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)))
94, 8anbi12d 749 . . . 4 (𝑢 = 𝐴 → (((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣))))
10 eleq1 2828 . . . . . 6 (𝑣 = 𝐵 → (𝑣 ∈ (𝑃𝐷) ↔ 𝐵 ∈ (𝑃𝐷)))
1110anbi2d 742 . . . . 5 (𝑣 = 𝐵 → ((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
12 oveq2 6823 . . . . . . 7 (𝑣 = 𝐵 → (𝐴𝐼𝑣) = (𝐴𝐼𝐵))
1312eleq2d 2826 . . . . . 6 (𝑣 = 𝐵 → (𝑡 ∈ (𝐴𝐼𝑣) ↔ 𝑡 ∈ (𝐴𝐼𝐵)))
1413rexbidv 3191 . . . . 5 (𝑣 = 𝐵 → (∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣) ↔ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)))
1511, 14anbi12d 749 . . . 4 (𝑣 = 𝐵 → (((𝐴 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝑣)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
16 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
17 simpl 474 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑎 = 𝑢)
18 eqidd 2762 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑃𝐷) = (𝑃𝐷))
1917, 18eleq12d 2834 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎 ∈ (𝑃𝐷) ↔ 𝑢 ∈ (𝑃𝐷)))
20 simpr 479 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → 𝑏 = 𝑣)
2120, 18eleq12d 2834 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑏 ∈ (𝑃𝐷) ↔ 𝑣 ∈ (𝑃𝐷)))
2219, 21anbi12d 749 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ↔ (𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷))))
23 oveq12 6824 . . . . . . . . 9 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑎𝐼𝑏) = (𝑢𝐼𝑣))
2423eleq2d 2826 . . . . . . . 8 ((𝑎 = 𝑢𝑏 = 𝑣) → (𝑡 ∈ (𝑎𝐼𝑏) ↔ 𝑡 ∈ (𝑢𝐼𝑣)))
2524rexbidv 3191 . . . . . . 7 ((𝑎 = 𝑢𝑏 = 𝑣) → (∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏) ↔ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣)))
2622, 25anbi12d 749 . . . . . 6 ((𝑎 = 𝑢𝑏 = 𝑣) → (((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏)) ↔ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))))
2726cbvopabv 4875 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
2816, 27eqtri 2783 . . . 4 𝑂 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝑃𝐷) ∧ 𝑣 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑢𝐼𝑣))}
299, 15, 28brabg 5145 . . 3 ((𝐴𝑃𝐵𝑃) → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
301, 2, 29syl2anc 696 . 2 (𝜑 → (𝐴𝑂𝐵 ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
311biantrurd 530 . . . . 5 (𝜑 → (¬ 𝐴𝐷 ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷)))
32 eldif 3726 . . . . 5 (𝐴 ∈ (𝑃𝐷) ↔ (𝐴𝑃 ∧ ¬ 𝐴𝐷))
3331, 32syl6bbr 278 . . . 4 (𝜑 → (¬ 𝐴𝐷𝐴 ∈ (𝑃𝐷)))
342biantrurd 530 . . . . 5 (𝜑 → (¬ 𝐵𝐷 ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷)))
35 eldif 3726 . . . . 5 (𝐵 ∈ (𝑃𝐷) ↔ (𝐵𝑃 ∧ ¬ 𝐵𝐷))
3634, 35syl6bbr 278 . . . 4 (𝜑 → (¬ 𝐵𝐷𝐵 ∈ (𝑃𝐷)))
3733, 36anbi12d 749 . . 3 (𝜑 → ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ↔ (𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷))))
3837anbi1d 743 . 2 (𝜑 → (((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵)) ↔ ((𝐴 ∈ (𝑃𝐷) ∧ 𝐵 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
3930, 38bitr4d 271 1 (𝜑 → (𝐴𝑂𝐵 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wrex 3052  cdif 3713   class class class wbr 4805  {copab 4865  cfv 6050  (class class class)co 6815  Basecbs 16080  distcds 16173  Itvcitv 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-rex 3057  df-rab 3060  df-v 3343  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-iota 6013  df-fv 6058  df-ov 6818
This theorem is referenced by:  islnoppd  25853  oppne1  25854  oppne2  25855  oppne3  25856  oppcom  25857  oppnid  25859  opphllem1  25860  opphllem3  25862  opphllem4  25863  opphllem5  25864  opphllem6  25865  oppperpex  25866  outpasch  25868  lnopp2hpgb  25876  hpgerlem  25878  colopp  25882  colhp  25883  lmiopp  25915  trgcopyeulem  25918
  Copyright terms: Public domain W3C validator