Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln2a Structured version   Visualization version   GIF version

Theorem islpln2a 33648
Description: The predicate "is a lattice plane" for join of atoms. (Contributed by NM, 16-Jul-2012.)
Hypotheses
Ref Expression
islpln2a.l = (le‘𝐾)
islpln2a.j = (join‘𝐾)
islpln2a.a 𝐴 = (Atoms‘𝐾)
islpln2a.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln2a ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))

Proof of Theorem islpln2a
StepHypRef Expression
1 oveq1 6534 . . . . . . . 8 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 islpln2a.j . . . . . . . . . 10 = (join‘𝐾)
3 islpln2a.a . . . . . . . . . 10 𝐴 = (Atoms‘𝐾)
42, 3hlatjidm 33469 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
543ad2antr2 1219 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑅 𝑅) = 𝑅)
61, 5sylan9eqr 2665 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
76oveq1d 6542 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ((𝑄 𝑅) 𝑆) = (𝑅 𝑆))
8 simpll 785 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝐾 ∈ HL)
9 simplr2 1096 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝑅𝐴)
10 simplr3 1097 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → 𝑆𝐴)
11 islpln2a.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
122, 3, 112atnelpln 33644 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → ¬ (𝑅 𝑆) ∈ 𝑃)
138, 9, 10, 12syl3anc 1317 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ¬ (𝑅 𝑆) ∈ 𝑃)
147, 13eqneltrd 2706 . . . . 5 (((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) ∧ 𝑄 = 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃)
1514ex 448 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑄 = 𝑅 → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
1615necon2ad 2796 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃𝑄𝑅))
17 hllat 33464 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Lat)
1817adantr 479 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
19 simpr3 1061 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
20 eqid 2609 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2120, 3atbase 33390 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
2219, 21syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
2320, 2, 3hlatjcl 33467 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
24233adant3r3 1267 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 islpln2a.l . . . . . . 7 = (le‘𝐾)
2620, 25, 2latleeqj2 16833 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑆 (𝑄 𝑅) ↔ ((𝑄 𝑅) 𝑆) = (𝑄 𝑅)))
2718, 22, 24, 26syl3anc 1317 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) ↔ ((𝑄 𝑅) 𝑆) = (𝑄 𝑅)))
282, 3, 112atnelpln 33644 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → ¬ (𝑄 𝑅) ∈ 𝑃)
29283adant3r3 1267 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ¬ (𝑄 𝑅) ∈ 𝑃)
30 eleq1 2675 . . . . . . 7 (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄 𝑅) ∈ 𝑃))
3130notbid 306 . . . . . 6 (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → (¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ ¬ (𝑄 𝑅) ∈ 𝑃))
3229, 31syl5ibrcom 235 . . . . 5 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) = (𝑄 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3327, 32sylbid 228 . . . 4 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (𝑆 (𝑄 𝑅) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3433con2d 127 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 → ¬ 𝑆 (𝑄 𝑅)))
3516, 34jcad 553 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 → (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
3625, 2, 3, 11lplni2 33637 . . 3 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))) → ((𝑄 𝑅) 𝑆) ∈ 𝑃)
37363expia 1258 . 2 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ((𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅)) → ((𝑄 𝑅) 𝑆) ∈ 𝑃))
3835, 37impbid 200 1 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → (((𝑄 𝑅) 𝑆) ∈ 𝑃 ↔ (𝑄𝑅 ∧ ¬ 𝑆 (𝑄 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  Basecbs 15641  lecple 15721  joincjn 16713  Latclat 16814  Atomscatm 33364  HLchlt 33451  LPlanesclpl 33592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-preset 16697  df-poset 16715  df-plt 16727  df-lub 16743  df-glb 16744  df-join 16745  df-meet 16746  df-p0 16808  df-lat 16815  df-clat 16877  df-oposet 33277  df-ol 33279  df-oml 33280  df-covers 33367  df-ats 33368  df-atl 33399  df-cvlat 33423  df-hlat 33452  df-llines 33598  df-lplanes 33599
This theorem is referenced by:  islpln2ah  33649  2atmat  33661  dalawlem13  33983  cdleme16d  34382
  Copyright terms: Public domain W3C validator