Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islptre Structured version   Visualization version   GIF version

Theorem islptre 39252
Description: An equivalence condition for a limit point w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
islptre.1 𝐽 = (topGen‘ran (,))
islptre.2 (𝜑𝐴 ⊆ ℝ)
islptre.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
islptre (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝐽,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem islptre
Dummy variables 𝑛 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islptre.1 . . . . . 6 𝐽 = (topGen‘ran (,))
2 retopon 22477 . . . . . 6 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
31, 2eqeltri 2694 . . . . 5 𝐽 ∈ (TopOn‘ℝ)
43topontopi 20646 . . . 4 𝐽 ∈ Top
54a1i 11 . . 3 (𝜑𝐽 ∈ Top)
6 islptre.2 . . 3 (𝜑𝐴 ⊆ ℝ)
7 islptre.3 . . 3 (𝜑𝐵 ∈ ℝ)
83toponunii 20647 . . . 4 ℝ = 𝐽
98islp2 20859 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
105, 6, 7, 9syl3anc 1323 . 2 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
11 simp1r 1084 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12 iooretop 22479 . . . . . . . . . . . 12 (𝑎(,)𝑏) ∈ (topGen‘ran (,))
1312, 1eleqtrri 2697 . . . . . . . . . . 11 (𝑎(,)𝑏) ∈ 𝐽
1413a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ 𝐽)
15 snssi 4308 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ (𝑎(,)𝑏))
1615adantl 482 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ (𝑎(,)𝑏))
17 ssid 3603 . . . . . . . . . . 11 (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)
1817a1i 11 . . . . . . . . . 10 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))
19 sseq2 3606 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → ({𝐵} ⊆ 𝑣 ↔ {𝐵} ⊆ (𝑎(,)𝑏)))
20 sseq1 3605 . . . . . . . . . . . 12 (𝑣 = (𝑎(,)𝑏) → (𝑣 ⊆ (𝑎(,)𝑏) ↔ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏)))
2119, 20anbi12d 746 . . . . . . . . . . 11 (𝑣 = (𝑎(,)𝑏) → (({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)) ↔ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))))
2221rspcev 3295 . . . . . . . . . 10 (((𝑎(,)𝑏) ∈ 𝐽 ∧ ({𝐵} ⊆ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑎(,)𝑏))) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
2314, 16, 18, 22syl12anc 1321 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))
24 ioossre 12177 . . . . . . . . 9 (𝑎(,)𝑏) ⊆ ℝ
2523, 24jctil 559 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏))))
26 elioore 12147 . . . . . . . . . . 11 (𝐵 ∈ (𝑎(,)𝑏) → 𝐵 ∈ ℝ)
2726snssd 4309 . . . . . . . . . 10 (𝐵 ∈ (𝑎(,)𝑏) → {𝐵} ⊆ ℝ)
2827adantl 482 . . . . . . . . 9 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → {𝐵} ⊆ ℝ)
298isnei 20817 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
304, 28, 29sylancr 694 . . . . . . . 8 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}) ↔ ((𝑎(,)𝑏) ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣 ⊆ (𝑎(,)𝑏)))))
3125, 30mpbird 247 . . . . . . 7 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
32313adant1 1077 . . . . . 6 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵}))
33 ineq1 3785 . . . . . . . 8 (𝑛 = (𝑎(,)𝑏) → (𝑛 ∩ (𝐴 ∖ {𝐵})) = ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})))
3433neeq1d 2849 . . . . . . 7 (𝑛 = (𝑎(,)𝑏) → ((𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
3534rspccva 3294 . . . . . 6 ((∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ∧ (𝑎(,)𝑏) ∈ ((nei‘𝐽)‘{𝐵})) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
3611, 32, 35syl2anc 692 . . . . 5 (((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) ∧ (𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ 𝐵 ∈ (𝑎(,)𝑏)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
37363exp 1261 . . . 4 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
3837ralrimivv 2964 . . 3 ((𝜑 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
397snssd 4309 . . . . . . . . 9 (𝜑 → {𝐵} ⊆ ℝ)
408isnei 20817 . . . . . . . . 9 ((𝐽 ∈ Top ∧ {𝐵} ⊆ ℝ) → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
414, 39, 40sylancr 694 . . . . . . . 8 (𝜑 → (𝑛 ∈ ((nei‘𝐽)‘{𝐵}) ↔ (𝑛 ⊆ ℝ ∧ ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))))
4241simplbda 653 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛))
431eleq2i 2690 . . . . . . . . . . . . . . 15 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
4443biimpi 206 . . . . . . . . . . . . . 14 (𝑣𝐽𝑣 ∈ (topGen‘ran (,)))
45443ad2ant2 1081 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝑣 ∈ (topGen‘ran (,)))
46 simp1 1059 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝜑)
47 simp3l 1087 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → {𝐵} ⊆ 𝑣)
48 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → {𝐵} ⊆ 𝑣)
497adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵 ∈ ℝ)
50 snssg 4296 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5149, 50syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → (𝐵𝑣 ↔ {𝐵} ⊆ 𝑣))
5248, 51mpbird 247 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝐵} ⊆ 𝑣) → 𝐵𝑣)
5346, 47, 52syl2anc 692 . . . . . . . . . . . . 13 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → 𝐵𝑣)
5445, 53jca 554 . . . . . . . . . . . 12 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣))
55 tg2 20680 . . . . . . . . . . . 12 ((𝑣 ∈ (topGen‘ran (,)) ∧ 𝐵𝑣) → ∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣))
56 ioof 12213 . . . . . . . . . . . . . . . . 17 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
57 ffn 6002 . . . . . . . . . . . . . . . . 17 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
58 ovelrn 6763 . . . . . . . . . . . . . . . . 17 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏)))
5956, 57, 58mp2b 10 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6059biimpi 206 . . . . . . . . . . . . . . 15 (𝑢 ∈ ran (,) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
6160adantr 481 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏))
62 simpll 789 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵𝑢)
63 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢 = (𝑎(,)𝑏))
6462, 63eleqtrd 2700 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝐵 ∈ (𝑎(,)𝑏))
65 simplr 791 . . . . . . . . . . . . . . . . . . . 20 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → 𝑢𝑣)
6663, 65eqsstr3d 3619 . . . . . . . . . . . . . . . . . . 19 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝑎(,)𝑏) ⊆ 𝑣)
6764, 66jca 554 . . . . . . . . . . . . . . . . . 18 (((𝐵𝑢𝑢𝑣) ∧ 𝑢 = (𝑎(,)𝑏)) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
6867ex 450 . . . . . . . . . . . . . . . . 17 ((𝐵𝑢𝑢𝑣) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
6968adantl 482 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (𝑢 = (𝑎(,)𝑏) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7069reximdv 3010 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7170reximdv 3010 . . . . . . . . . . . . . 14 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑢 = (𝑎(,)𝑏) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
7261, 71mpd 15 . . . . . . . . . . . . 13 ((𝑢 ∈ ran (,) ∧ (𝐵𝑢𝑢𝑣)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7372rexlimiva 3021 . . . . . . . . . . . 12 (∃𝑢 ∈ ran (,)(𝐵𝑢𝑢𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
7454, 55, 733syl 18 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣))
75 simpl3r 1115 . . . . . . . . . . . . . . . 16 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → 𝑣𝑛)
7675adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → 𝑣𝑛)
77 sstr 3591 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ⊆ 𝑣𝑣𝑛) → (𝑎(,)𝑏) ⊆ 𝑛)
7877expcom 451 . . . . . . . . . . . . . . 15 (𝑣𝑛 → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
7976, 78syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝑎(,)𝑏) ⊆ 𝑣 → (𝑎(,)𝑏) ⊆ 𝑛))
8079anim2d 588 . . . . . . . . . . . . 13 ((((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ*) → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8180reximdva 3011 . . . . . . . . . . . 12 (((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8281reximdva 3011 . . . . . . . . . . 11 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8374, 82mpd 15 . . . . . . . . . 10 ((𝜑𝑣𝐽 ∧ ({𝐵} ⊆ 𝑣𝑣𝑛)) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
84833exp 1261 . . . . . . . . 9 (𝜑 → (𝑣𝐽 → (({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))))
8584rexlimdv 3023 . . . . . . . 8 (𝜑 → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8685adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑣𝐽 ({𝐵} ⊆ 𝑣𝑣𝑛) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)))
8742, 86mpd 15 . . . . . 6 ((𝜑𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
8887adantlr 750 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛))
89 nfv 1840 . . . . . . . 8 𝑎𝜑
90 nfra1 2936 . . . . . . . 8 𝑎𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9189, 90nfan 1825 . . . . . . 7 𝑎(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
92 nfv 1840 . . . . . . 7 𝑎 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9391, 92nfan 1825 . . . . . 6 𝑎((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
94 nfv 1840 . . . . . 6 𝑎(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
95 nfv 1840 . . . . . . . . . . 11 𝑏𝜑
96 nfra2 2941 . . . . . . . . . . 11 𝑏𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
9795, 96nfan 1825 . . . . . . . . . 10 𝑏(𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
98 nfv 1840 . . . . . . . . . 10 𝑏 𝑛 ∈ ((nei‘𝐽)‘{𝐵})
9997, 98nfan 1825 . . . . . . . . 9 𝑏((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵}))
100 nfv 1840 . . . . . . . . 9 𝑏 𝑎 ∈ ℝ*
10199, 100nfan 1825 . . . . . . . 8 𝑏(((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*)
102 nfv 1840 . . . . . . . 8 𝑏(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅
103 inss1 3811 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑎(,)𝑏)
104 simp3r 1088 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎(,)𝑏) ⊆ 𝑛)
105103, 104syl5ss 3594 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ 𝑛)
106 inss2 3812 . . . . . . . . . . . 12 ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵})
107106a1i 11 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝐴 ∖ {𝐵}))
108105, 107ssind 3815 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})))
109 simpllr 798 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
1101093ad2ant1 1080 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
111 simp1r 1084 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑎 ∈ ℝ*)
112 simp2 1060 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝑏 ∈ ℝ*)
113111, 112jca 554 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
114 simp3l 1087 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → 𝐵 ∈ (𝑎(,)𝑏))
115 rsp2 2931 . . . . . . . . . . 11 (∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
116110, 113, 114, 115syl3c 66 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
117 ssn0 3948 . . . . . . . . . 10 ((((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ⊆ (𝑛 ∩ (𝐴 ∖ {𝐵})) ∧ ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
118108, 116, 117syl2anc 692 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) ∧ 𝑏 ∈ ℝ* ∧ (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛)) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
1191183exp 1261 . . . . . . . 8 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (𝑏 ∈ ℝ* → ((𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
120101, 102, 119rexlimd 3019 . . . . . . 7 ((((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) ∧ 𝑎 ∈ ℝ*) → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
121120ex 450 . . . . . 6 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑎 ∈ ℝ* → (∃𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12293, 94, 121rexlimd 3019 . . . . 5 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑛) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅))
12388, 122mpd 15 . . . 4 (((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐵})) → (𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
124123ralrimiva 2960 . . 3 ((𝜑 ∧ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)) → ∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅)
12538, 124impbida 876 . 2 (𝜑 → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐵})(𝑛 ∩ (𝐴 ∖ {𝐵})) ≠ ∅ ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
12610, 125bitrd 268 1 (𝜑 → (𝐵 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑎 ∈ ℝ*𝑏 ∈ ℝ* (𝐵 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ (𝐴 ∖ {𝐵})) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  cdif 3552  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   × cxp 5072  ran crn 5075   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  *cxr 10017  (,)cioo 12117  topGenctg 16019  Topctop 20617  TopOnctopon 20618  neicnei 20811  limPtclp 20848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-ioo 12121  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850
This theorem is referenced by:  lptioo2  39264  lptioo1  39265  lptre2pt  39273
  Copyright terms: Public domain W3C validator