Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpat Structured version   Visualization version   GIF version

Theorem islshpat 36147
Description: Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 36110. (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
islshpat.v 𝑉 = (Base‘𝑊)
islshpat.s 𝑆 = (LSubSp‘𝑊)
islshpat.p = (LSSum‘𝑊)
islshpat.h 𝐻 = (LSHyp‘𝑊)
islshpat.a 𝐴 = (LSAtoms‘𝑊)
islshpat.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpat (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Distinct variable groups:   ,𝑞   𝑆,𝑞   𝑈,𝑞   𝑉,𝑞   𝑊,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐴(𝑞)   𝐻(𝑞)

Proof of Theorem islshpat
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 islshpat.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2821 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
3 islshpat.s . . 3 𝑆 = (LSubSp‘𝑊)
4 islshpat.p . . 3 = (LSSum‘𝑊)
5 islshpat.h . . 3 𝐻 = (LSHyp‘𝑊)
6 islshpat.w . . 3 (𝜑𝑊 ∈ LMod)
71, 2, 3, 4, 5, 6islshpsm 36110 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
8 df-3an 1085 . . . . 5 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
9 r19.42v 3350 . . . . 5 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
108, 9bitr4i 280 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
11 df-rex 3144 . . . . . . . 8 (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
12 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑣 = (0g𝑊))
1312sneqd 4573 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → {𝑣} = {(0g𝑊)})
1413fveq2d 6669 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = ((LSpan‘𝑊)‘{(0g𝑊)}))
156ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑊 ∈ LMod)
16 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (0g𝑊) = (0g𝑊)
1716, 2lspsn0 19774 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1815, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{(0g𝑊)}) = {(0g𝑊)})
1914, 18eqtrd 2856 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → ((LSpan‘𝑊)‘{𝑣}) = {(0g𝑊)})
2019oveq2d 7166 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = (𝑈 {(0g𝑊)}))
21 simplrl 775 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑆)
223lsssubg 19723 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2315, 21, 22syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
2416, 4lsm01 18791 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ (SubGrp‘𝑊) → (𝑈 {(0g𝑊)}) = 𝑈)
2523, 24syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 {(0g𝑊)}) = 𝑈)
2620, 25eqtrd 2856 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑈)
27 simplrr 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → 𝑈𝑉)
2826, 27eqnetrd 3083 . . . . . . . . . . . . . . 15 ((((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣 = (0g𝑊)) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉)
2928ex 415 . . . . . . . . . . . . . 14 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → (𝑣 = (0g𝑊) → (𝑈 ((LSpan‘𝑊)‘{𝑣})) ≠ 𝑉))
3029necon2d 3039 . . . . . . . . . . . . 13 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉𝑣 ≠ (0g𝑊)))
3130pm4.71rd 565 . . . . . . . . . . . 12 (((𝜑𝑣𝑉) ∧ (𝑈𝑆𝑈𝑉)) → ((𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉 ↔ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3231pm5.32da 581 . . . . . . . . . . 11 ((𝜑𝑣𝑉) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3332pm5.32da 581 . . . . . . . . . 10 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))))
34 eldifsn 4713 . . . . . . . . . . . 12 (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ↔ (𝑣𝑉𝑣 ≠ (0g𝑊)))
3534anbi1i 625 . . . . . . . . . . 11 ((𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
36 anass 471 . . . . . . . . . . . 12 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
37 an12 643 . . . . . . . . . . . . 13 ((𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
3837anbi2i 624 . . . . . . . . . . . 12 ((𝑣𝑉 ∧ (𝑣 ≠ (0g𝑊) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
3936, 38bitri 277 . . . . . . . . . . 11 (((𝑣𝑉𝑣 ≠ (0g𝑊)) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4035, 39bitr2i 278 . . . . . . . . . 10 ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑣 ≠ (0g𝑊) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4133, 40syl6bb 289 . . . . . . . . 9 (𝜑 → ((𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ (𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4241exbidv 1918 . . . . . . . 8 (𝜑 → (∃𝑣(𝑣𝑉 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
4311, 42syl5bb 285 . . . . . . 7 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
44 fvex 6678 . . . . . . . . . 10 ((LSpan‘𝑊)‘{𝑣}) ∈ V
4544rexcom4b 3525 . . . . . . . . 9 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
46 df-rex 3144 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4745, 46bitr2i 278 . . . . . . . 8 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})))
48 ancom 463 . . . . . . . . . 10 ((((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
4948rexbii 3247 . . . . . . . . 9 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5049exbii 1844 . . . . . . . 8 (∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ∧ 𝑞 = ((LSpan‘𝑊)‘{𝑣})) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5147, 50bitri 277 . . . . . . 7 (∃𝑣(𝑣 ∈ (𝑉 ∖ {(0g𝑊)}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5243, 51syl6bb 289 . . . . . 6 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))))
53 r19.41v 3347 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
54 oveq2 7158 . . . . . . . . . . . 12 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 𝑞) = (𝑈 ((LSpan‘𝑊)‘{𝑣})))
5554eqeq1d 2823 . . . . . . . . . . 11 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → ((𝑈 𝑞) = 𝑉 ↔ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉))
5655anbi2d 630 . . . . . . . . . 10 (𝑞 = ((LSpan‘𝑊)‘{𝑣}) → (((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5756pm5.32i 577 . . . . . . . . 9 ((𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5857rexbii 3247 . . . . . . . 8 (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
5953, 58bitr3i 279 . . . . . . 7 ((∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6059exbii 1844 . . . . . 6 (∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞𝑣 ∈ (𝑉 ∖ {(0g𝑊)})(𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉)))
6152, 60syl6bbr 291 . . . . 5 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
62 islshpat.a . . . . . . . . 9 𝐴 = (LSAtoms‘𝑊)
631, 2, 16, 62islsat 36121 . . . . . . . 8 (𝑊 ∈ LMod → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
646, 63syl 17 . . . . . . 7 (𝜑 → (𝑞𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣})))
6564anbi1d 631 . . . . . 6 (𝜑 → ((𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6665exbidv 1918 . . . . 5 (𝜑 → (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ ∃𝑞(∃𝑣 ∈ (𝑉 ∖ {(0g𝑊)})𝑞 = ((LSpan‘𝑊)‘{𝑣}) ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6761, 66bitr4d 284 . . . 4 (𝜑 → (∃𝑣𝑉 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
6810, 67syl5bb 285 . . 3 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉))))
69 df-3an 1085 . . . 4 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
70 r19.42v 3350 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
71 df-rex 3144 . . . . 5 (∃𝑞𝐴 ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7270, 71bitr3i 279 . . . 4 (((𝑈𝑆𝑈𝑉) ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉) ↔ ∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)))
7369, 72bitr2i 278 . . 3 (∃𝑞(𝑞𝐴 ∧ ((𝑈𝑆𝑈𝑉) ∧ (𝑈 𝑞) = 𝑉)) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉))
7468, 73syl6bb 289 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 ((LSpan‘𝑊)‘{𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
757, 74bitrd 281 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wrex 3139  cdif 3933  {csn 4561  cfv 6350  (class class class)co 7150  Basecbs 16477  0gc0g 16707  SubGrpcsubg 18267  LSSumclsm 18753  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LSAtomsclsa 36104  LSHypclsh 36105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lsatoms 36106  df-lshyp 36107
This theorem is referenced by:  islshpcv  36183
  Copyright terms: Public domain W3C validator