![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpkrN | Structured version Visualization version GIF version |
Description: The predicate "is a hyperplane" (of a left module or left vector space). TODO: should it be 𝑈 = (𝐾‘𝑔) or (𝐾‘𝑔) = 𝑈 as in lshpkrex 34926? Both standards seem to be used randomly throughout set.mm; we should decide on a preferred one. (Contributed by NM, 7-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lshpset2.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpset2.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpset2.z | ⊢ 0 = (0g‘𝐷) |
lshpset2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpset2.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lshpset2.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
islshpkrN | ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpset2.d | . . . 4 ⊢ 𝐷 = (Scalar‘𝑊) | |
3 | lshpset2.z | . . . 4 ⊢ 0 = (0g‘𝐷) | |
4 | lshpset2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
5 | lshpset2.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | lshpset2.k | . . . 4 ⊢ 𝐾 = (LKer‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | lshpset2N 34927 | . . 3 ⊢ (𝑊 ∈ LVec → 𝐻 = {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) |
8 | 7 | eleq2d 2825 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))})) |
9 | elex 3352 | . . . 4 ⊢ (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} → 𝑈 ∈ V) | |
10 | 9 | adantl 473 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))}) → 𝑈 ∈ V) |
11 | fvex 6363 | . . . . . . 7 ⊢ (𝐾‘𝑔) ∈ V | |
12 | eleq1 2827 | . . . . . . 7 ⊢ (𝑈 = (𝐾‘𝑔) → (𝑈 ∈ V ↔ (𝐾‘𝑔) ∈ V)) | |
13 | 11, 12 | mpbiri 248 | . . . . . 6 ⊢ (𝑈 = (𝐾‘𝑔) → 𝑈 ∈ V) |
14 | 13 | adantl 473 | . . . . 5 ⊢ ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
15 | 14 | rexlimivw 3167 | . . . 4 ⊢ (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)) → 𝑈 ∈ V) |
16 | 15 | adantl 473 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔))) → 𝑈 ∈ V) |
17 | eqeq1 2764 | . . . . . 6 ⊢ (𝑠 = 𝑈 → (𝑠 = (𝐾‘𝑔) ↔ 𝑈 = (𝐾‘𝑔))) | |
18 | 17 | anbi2d 742 | . . . . 5 ⊢ (𝑠 = 𝑈 → ((𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
19 | 18 | rexbidv 3190 | . . . 4 ⊢ (𝑠 = 𝑈 → (∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔)) ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
20 | 19 | elabg 3491 | . . 3 ⊢ (𝑈 ∈ V → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
21 | 10, 16, 20 | pm5.21nd 979 | . 2 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ {𝑠 ∣ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑠 = (𝐾‘𝑔))} ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
22 | 8, 21 | bitrd 268 | 1 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ ∃𝑔 ∈ 𝐹 (𝑔 ≠ (𝑉 × { 0 }) ∧ 𝑈 = (𝐾‘𝑔)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 ≠ wne 2932 ∃wrex 3051 Vcvv 3340 {csn 4321 × cxp 5264 ‘cfv 6049 Basecbs 16079 Scalarcsca 16166 0gc0g 16322 LVecclvec 19324 LSHypclsh 34783 LFnlclfn 34865 LKerclk 34893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-tpos 7522 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-cntz 17970 df-lsm 18271 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-oppr 18843 df-dvdsr 18861 df-unit 18862 df-invr 18892 df-drng 18971 df-lmod 19087 df-lss 19155 df-lsp 19194 df-lvec 19325 df-lshyp 34785 df-lfl 34866 df-lkr 34894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |