Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpsm Structured version   Visualization version   GIF version

Theorem islshpsm 34093
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
islshpsm.v 𝑉 = (Base‘𝑊)
islshpsm.n 𝑁 = (LSpan‘𝑊)
islshpsm.s 𝑆 = (LSubSp‘𝑊)
islshpsm.p = (LSSum‘𝑊)
islshpsm.h 𝐻 = (LSHyp‘𝑊)
islshpsm.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpsm (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑆   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝜑,𝑣
Allowed substitution hints:   (𝑣)   𝐻(𝑣)   𝑁(𝑣)

Proof of Theorem islshpsm
StepHypRef Expression
1 islshpsm.w . . 3 (𝜑𝑊 ∈ LMod)
2 islshpsm.v . . . 4 𝑉 = (Base‘𝑊)
3 islshpsm.n . . . 4 𝑁 = (LSpan‘𝑊)
4 islshpsm.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 islshpsm.h . . . 4 𝐻 = (LSHyp‘𝑊)
62, 3, 4, 5islshp 34092 . . 3 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
71, 6syl 17 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
81ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑊 ∈ LMod)
9 simplrl 800 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑆)
104, 3lspid 18976 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
118, 9, 10syl2anc 693 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁𝑈) = 𝑈)
1211uneq1d 3764 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑁𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣})))
1312fveq2d 6193 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
142, 4lssss 18931 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
159, 14syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑉)
16 snssi 4337 . . . . . . . . . 10 (𝑣𝑉 → {𝑣} ⊆ 𝑉)
1716adantl 482 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → {𝑣} ⊆ 𝑉)
182, 3lspun 18981 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
198, 15, 17, 18syl3anc 1325 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
202, 4, 3lspcl 18970 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
218, 17, 20syl2anc 693 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
22 islshpsm.p . . . . . . . . . 10 = (LSSum‘𝑊)
234, 3, 22lsmsp 19080 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
248, 9, 21, 23syl3anc 1325 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
2513, 19, 243eqtr4rd 2666 . . . . . . 7 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣})))
2625eqeq1d 2623 . . . . . 6 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2726rexbidva 3047 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝑉)) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2827pm5.32da 673 . . . 4 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
2928bicomd 213 . . 3 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
30 df-3an 1039 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
31 df-3an 1039 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
3229, 30, 313bitr4g 303 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
337, 32bitrd 268 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989  wne 2793  wrex 2912  cun 3570  wss 3572  {csn 4175  cfv 5886  (class class class)co 6647  Basecbs 15851  LSSumclsm 18043  LModclmod 18857  LSubSpclss 18926  LSpanclspn 18965  LSHypclsh 34088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-grp 17419  df-minusg 17420  df-sbg 17421  df-subg 17585  df-cntz 17744  df-lsm 18045  df-cmn 18189  df-abl 18190  df-mgp 18484  df-ur 18496  df-ring 18543  df-lmod 18859  df-lss 18927  df-lsp 18966  df-lshyp 34090
This theorem is referenced by:  lshpnelb  34097  lshpcmp  34101  islshpat  34130  lshpkrex  34231  dochshpncl  36499
  Copyright terms: Public domain W3C validator