Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpsm Structured version   Visualization version   GIF version

Theorem islshpsm 35996
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
islshpsm.v 𝑉 = (Base‘𝑊)
islshpsm.n 𝑁 = (LSpan‘𝑊)
islshpsm.s 𝑆 = (LSubSp‘𝑊)
islshpsm.p = (LSSum‘𝑊)
islshpsm.h 𝐻 = (LSHyp‘𝑊)
islshpsm.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpsm (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑆   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝜑,𝑣
Allowed substitution hints:   (𝑣)   𝐻(𝑣)   𝑁(𝑣)

Proof of Theorem islshpsm
StepHypRef Expression
1 islshpsm.w . . 3 (𝜑𝑊 ∈ LMod)
2 islshpsm.v . . . 4 𝑉 = (Base‘𝑊)
3 islshpsm.n . . . 4 𝑁 = (LSpan‘𝑊)
4 islshpsm.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 islshpsm.h . . . 4 𝐻 = (LSHyp‘𝑊)
62, 3, 4, 5islshp 35995 . . 3 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
71, 6syl 17 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
81ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑊 ∈ LMod)
9 simplrl 773 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑆)
104, 3lspid 19683 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁𝑈) = 𝑈)
1211uneq1d 4135 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑁𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣})))
1312fveq2d 6667 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
142, 4lssss 19637 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
159, 14syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑉)
16 snssi 4733 . . . . . . . . . 10 (𝑣𝑉 → {𝑣} ⊆ 𝑉)
1716adantl 482 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → {𝑣} ⊆ 𝑉)
182, 3lspun 19688 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
198, 15, 17, 18syl3anc 1363 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
202, 4, 3lspcl 19677 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
218, 17, 20syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
22 islshpsm.p . . . . . . . . . 10 = (LSSum‘𝑊)
234, 3, 22lsmsp 19787 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
248, 9, 21, 23syl3anc 1363 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
2513, 19, 243eqtr4rd 2864 . . . . . . 7 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣})))
2625eqeq1d 2820 . . . . . 6 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2726rexbidva 3293 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝑉)) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2827pm5.32da 579 . . . 4 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
2928bicomd 224 . . 3 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
30 df-3an 1081 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
31 df-3an 1081 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
3229, 30, 313bitr4g 315 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
337, 32bitrd 280 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  cun 3931  wss 3933  {csn 4557  cfv 6348  (class class class)co 7145  Basecbs 16471  LSSumclsm 18688  LModclmod 19563  LSubSpclss 19632  LSpanclspn 19672  LSHypclsh 35991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lshyp 35993
This theorem is referenced by:  lshpnelb  36000  lshpcmp  36004  islshpat  36033  lshpkrex  36134  dochshpncl  38400
  Copyright terms: Public domain W3C validator