MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss4 Structured version   Visualization version   GIF version

Theorem islss4 19736
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
islss4.f 𝐹 = (Scalar‘𝑊)
islss4.b 𝐵 = (Base‘𝐹)
islss4.v 𝑉 = (Base‘𝑊)
islss4.t · = ( ·𝑠𝑊)
islss4.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Distinct variable groups:   𝐹,𝑎,𝑏   𝑊,𝑎,𝑏   𝐵,𝑎,𝑏   𝑉,𝑎,𝑏   · ,𝑎,𝑏   𝑆,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem islss4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 islss4.s . . . 4 𝑆 = (LSubSp‘𝑊)
21lsssubg 19731 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
3 islss4.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 islss4.t . . . . 5 · = ( ·𝑠𝑊)
5 islss4.b . . . . 5 𝐵 = (Base‘𝐹)
63, 4, 5, 1lssvscl 19729 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎𝐵𝑏𝑈)) → (𝑎 · 𝑏) ∈ 𝑈)
76ralrimivva 3193 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)
82, 7jca 514 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈))
9 islss4.v . . . . 5 𝑉 = (Base‘𝑊)
109subgss 18282 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈𝑉)
1110ad2antrl 726 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑉)
12 eqid 2823 . . . . . 6 (0g𝑊) = (0g𝑊)
1312subg0cl 18289 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → (0g𝑊) ∈ 𝑈)
1413ne0d 4303 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ≠ ∅)
1514ad2antrl 726 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ≠ ∅)
16 eqid 2823 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
1716subgcl 18291 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈𝑐𝑈) → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
18173exp 1115 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
1918adantl 484 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2019ralrimdv 3190 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2120ralimdv 3180 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2221ralimdv 3180 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2322impr 457 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
243, 5, 9, 16, 4, 1islss 19708 . . 3 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2511, 15, 23, 24syl3anbrc 1339 . 2 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑆)
268, 25impbida 799 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wss 3938  c0 4293  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  SubGrpcsubg 18275  LModclmod 19636  LSubSpclss 19705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706
This theorem is referenced by:  lssacs  19741  lmhmima  19821  lmhmpreima  19822  lmhmeql  19829  lsmcl  19857  issubassa2  20123  mplind  20284  mhplss  20344  dsmmlss  20890  fedgmullem2  31028
  Copyright terms: Public domain W3C validator