Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg2 Structured version   Visualization version   GIF version

Theorem islssfg2 37156
Description: Property of a finitely generated left (sub-)module, with a relaxed constraint on the spanning vectors. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
islssfg2.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islssfg2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏
Allowed substitution hint:   𝐵(𝑏)

Proof of Theorem islssfg2
StepHypRef Expression
1 islssfg.x . . 3 𝑋 = (𝑊s 𝑈)
2 islssfg.s . . 3 𝑆 = (LSubSp‘𝑊)
3 islssfg.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3islssfg 37155 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
5 islssfg2.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑊)
65, 2lssss 18869 . . . . . . . . . . . 12 ((𝑁𝑏) ∈ 𝑆 → (𝑁𝑏) ⊆ 𝐵)
76adantl 482 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑁𝑏) ⊆ 𝐵)
8 sstr2 3594 . . . . . . . . . . 11 (𝑏 ⊆ (𝑁𝑏) → ((𝑁𝑏) ⊆ 𝐵𝑏𝐵))
97, 8mpan9 486 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏 ⊆ (𝑁𝑏)) → 𝑏𝐵)
105, 3lspssid 18917 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
1110adantlr 750 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ∧ 𝑏𝐵) → 𝑏 ⊆ (𝑁𝑏))
129, 11impbida 876 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ⊆ (𝑁𝑏) ↔ 𝑏𝐵))
13 vex 3192 . . . . . . . . . 10 𝑏 ∈ V
1413elpw 4141 . . . . . . . . 9 (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ⊆ (𝑁𝑏))
1513elpw 4141 . . . . . . . . 9 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
1612, 14, 153bitr4g 303 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵))
17 eleq1 2686 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → ((𝑁𝑏) ∈ 𝑆𝑈𝑆))
1817anbi2d 739 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) ↔ (𝑊 ∈ LMod ∧ 𝑈𝑆)))
19 pweq 4138 . . . . . . . . . . 11 ((𝑁𝑏) = 𝑈 → 𝒫 (𝑁𝑏) = 𝒫 𝑈)
2019eleq2d 2684 . . . . . . . . . 10 ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝑈))
2120bibi1d 333 . . . . . . . . 9 ((𝑁𝑏) = 𝑈 → ((𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵) ↔ (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2218, 21imbi12d 334 . . . . . . . 8 ((𝑁𝑏) = 𝑈 → (((𝑊 ∈ LMod ∧ (𝑁𝑏) ∈ 𝑆) → (𝑏 ∈ 𝒫 (𝑁𝑏) ↔ 𝑏 ∈ 𝒫 𝐵)) ↔ ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵))))
2316, 22mpbii 223 . . . . . . 7 ((𝑁𝑏) = 𝑈 → ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2423com12 32 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑁𝑏) = 𝑈 → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2524adantld 483 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) → (𝑏 ∈ 𝒫 𝑈𝑏 ∈ 𝒫 𝐵)))
2625pm5.32rd 671 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈))))
27 elin 3779 . . . . . 6 (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2827anbi1i 730 . . . . 5 ((𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈))
29 anass 680 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
3028, 29bitr2i 265 . . . 4 ((𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈))
3126, 30syl6bb 276 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑏 ∈ 𝒫 𝑈 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)) ↔ (𝑏 ∈ (𝒫 𝐵 ∩ Fin) ∧ (𝑁𝑏) = 𝑈)))
3231rexbidv2 3042 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
334, 32bitrd 268 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ (𝒫 𝐵 ∩ Fin)(𝑁𝑏) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wrex 2908  cin 3558  wss 3559  𝒫 cpw 4135  cfv 5852  (class class class)co 6610  Fincfn 7907  Basecbs 15792  s cress 15793  LModclmod 18795  LSubSpclss 18864  LSpanclspn 18903  LFinGenclfig 37152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-sca 15889  df-vsca 15890  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-mgp 18422  df-ur 18434  df-ring 18481  df-lmod 18797  df-lss 18865  df-lsp 18904  df-lfig 37153
This theorem is referenced by:  islssfgi  37157  lsmfgcl  37159  islnm2  37163  lmhmfgima  37169
  Copyright terms: Public domain W3C validator