Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn2N Structured version   Visualization version   GIF version

Theorem isltrn2N 34220
Description: The predicate "is a lattice translation". Version of isltrn 34219 that considers only different 𝑝 and 𝑞. TODO: Can this eliminate some separate proofs for the 𝑝 = 𝑞 case? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
isltrn2N ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑊,𝑝,𝑞   𝐹,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑞,𝑝)   𝐻(𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem isltrn2N
StepHypRef Expression
1 ltrnset.l . . 3 = (le‘𝐾)
2 ltrnset.j . . 3 = (join‘𝐾)
3 ltrnset.m . . 3 = (meet‘𝐾)
4 ltrnset.a . . 3 𝐴 = (Atoms‘𝐾)
5 ltrnset.h . . 3 𝐻 = (LHyp‘𝐾)
6 ltrnset.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
7 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7isltrn 34219 . 2 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
9 3simpa 1050 . . . . . 6 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊))
109imim1i 60 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
11 3anass 1034 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
12 3anrot 1035 . . . . . . . . 9 ((𝑝𝑞 ∧ ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞))
13 df-ne 2781 . . . . . . . . . 10 (𝑝𝑞 ↔ ¬ 𝑝 = 𝑞)
1413anbi1i 726 . . . . . . . . 9 ((𝑝𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1511, 12, 143bitr3i 288 . . . . . . . 8 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) ↔ (¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
1615imbi1i 337 . . . . . . 7 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
17 impexp 460 . . . . . . 7 (((¬ 𝑝 = 𝑞 ∧ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
1816, 17bitri 262 . . . . . 6 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ (¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑞𝑝 = 𝑞)
20 fveq2 6088 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
2119, 20oveq12d 6545 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝 (𝐹𝑝)) = (𝑞 (𝐹𝑞)))
2221oveq1d 6542 . . . . . . . 8 (𝑝 = 𝑞 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
2322a1d 25 . . . . . . 7 (𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
24 pm2.61 181 . . . . . . 7 ((𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
2523, 24ax-mp 5 . . . . . 6 ((¬ 𝑝 = 𝑞 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2618, 25sylbi 205 . . . . 5 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2710, 26impbii 197 . . . 4 (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
28272ralbii 2963 . . 3 (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2928anbi2i 725 . 2 ((𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
308, 29syl6bb 274 1 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝑝𝑞) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895   class class class wbr 4577  cfv 5790  (class class class)co 6527  lecple 15721  joincjn 16713  meetcmee 16714  Atomscatm 33364  LHypclh 34084  LDilcldil 34200  LTrncltrn 34201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-ltrn 34205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator