MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfcn Structured version   Visualization version   GIF version

Theorem ismbfcn 23149
Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbfcn (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))

Proof of Theorem ismbfcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mbfdm 23146 . . 3 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2 fdm 5950 . . . 4 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
32eleq1d 2671 . . 3 (𝐹:𝐴⟶ℂ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
41, 3syl5ib 232 . 2 (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol))
5 mbfdm 23146 . . . 4 ((ℜ ∘ 𝐹) ∈ MblFn → dom (ℜ ∘ 𝐹) ∈ dom vol)
65adantr 479 . . 3 (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → dom (ℜ ∘ 𝐹) ∈ dom vol)
7 ref 13649 . . . . . 6 ℜ:ℂ⟶ℝ
8 fco 5957 . . . . . 6 ((ℜ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℜ ∘ 𝐹):𝐴⟶ℝ)
97, 8mpan 701 . . . . 5 (𝐹:𝐴⟶ℂ → (ℜ ∘ 𝐹):𝐴⟶ℝ)
10 fdm 5950 . . . . 5 ((ℜ ∘ 𝐹):𝐴⟶ℝ → dom (ℜ ∘ 𝐹) = 𝐴)
119, 10syl 17 . . . 4 (𝐹:𝐴⟶ℂ → dom (ℜ ∘ 𝐹) = 𝐴)
1211eleq1d 2671 . . 3 (𝐹:𝐴⟶ℂ → (dom (ℜ ∘ 𝐹) ∈ dom vol ↔ 𝐴 ∈ dom vol))
136, 12syl5ib 232 . 2 (𝐹:𝐴⟶ℂ → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) → 𝐴 ∈ dom vol))
149adantr 479 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹):𝐴⟶ℝ)
15 ismbf 23148 . . . . . . . 8 ((ℜ ∘ 𝐹):𝐴⟶ℝ → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
1614, 15syl 17 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℜ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
17 imf 13650 . . . . . . . . . 10 ℑ:ℂ⟶ℝ
18 fco 5957 . . . . . . . . . 10 ((ℑ:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (ℑ ∘ 𝐹):𝐴⟶ℝ)
1917, 18mpan 701 . . . . . . . . 9 (𝐹:𝐴⟶ℂ → (ℑ ∘ 𝐹):𝐴⟶ℝ)
2019adantr 479 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹):𝐴⟶ℝ)
21 ismbf 23148 . . . . . . . 8 ((ℑ ∘ 𝐹):𝐴⟶ℝ → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
2220, 21syl 17 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) ∈ MblFn ↔ ∀𝑥 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
2316, 22anbi12d 742 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
24 r19.26 3045 . . . . . 6 (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (∀𝑥 ∈ ran (,)((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ ran (,)((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))
2523, 24syl6bbr 276 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
26 mblss 23051 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
27 cnex 9874 . . . . . . . 8 ℂ ∈ V
28 reex 9884 . . . . . . . 8 ℝ ∈ V
29 elpm2r 7739 . . . . . . . 8 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
3027, 28, 29mpanl12 713 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
3126, 30sylan2 489 . . . . . 6 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
3231biantrurd 527 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
3325, 32bitrd 266 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
34 ismbf1 23144 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
3533, 34syl6rbbr 277 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
3635ex 448 . 2 (𝐹:𝐴⟶ℂ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))))
374, 13, 36pm5.21ndd 367 1 (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  Vcvv 3172  wss 3539  ccnv 5027  dom cdm 5028  ran crn 5029  cima 5031  ccom 5032  wf 5786  (class class class)co 6527  pm cpm 7723  cc 9791  cr 9792  (,)cioo 12005  cre 13634  cim 13635  volcvol 22984  MblFncmbf 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-q 11624  df-rp 11668  df-xadd 11782  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-xmet 19509  df-met 19510  df-ovol 22985  df-vol 22986  df-mbf 23139
This theorem is referenced by:  ismbfcn2  23157  mbfres  23162  mbfimaopnlem  23173  mbfresfi  32450  itgaddnc  32464  itgmulc2nc  32472  ftc1anclem5  32483  mbfres2cn  38674
  Copyright terms: Public domain W3C validator