MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl Structured version   Visualization version   GIF version

Theorem ismbl 23340
Description: The predicate "𝐴 is Lebesgue-measurable". A set is measurable if it splits every other set 𝑥 in a "nice" way, that is, if the measure of the pieces 𝑥𝐴 and 𝑥𝐴 sum up to the measure of 𝑥 (assuming that the measure of 𝑥 is a real number, so that this addition makes sense). (Contributed by Mario Carneiro, 17-Mar-2014.)
Assertion
Ref Expression
ismbl (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ineq2 3841 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
21fveq2d 6233 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
3 difeq2 3755 . . . . . . 7 (𝑦 = 𝐴 → (𝑥𝑦) = (𝑥𝐴))
43fveq2d 6233 . . . . . 6 (𝑦 = 𝐴 → (vol*‘(𝑥𝑦)) = (vol*‘(𝑥𝐴)))
52, 4oveq12d 6708 . . . . 5 (𝑦 = 𝐴 → ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
65eqeq2d 2661 . . . 4 (𝑦 = 𝐴 → ((vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
76ralbidv 3015 . . 3 (𝑦 = 𝐴 → (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦))) ↔ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
8 df-vol 23280 . . . . . 6 vol = (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
98dmeqi 5357 . . . . 5 dom vol = dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))})
10 dmres 5454 . . . . 5 dom (vol* ↾ {𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*)
11 ovolf 23296 . . . . . . 7 vol*:𝒫 ℝ⟶(0[,]+∞)
1211fdmi 6090 . . . . . 6 dom vol* = 𝒫 ℝ
1312ineq2i 3844 . . . . 5 ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ dom vol*) = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
149, 10, 133eqtri 2677 . . . 4 dom vol = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
15 dfrab2 3936 . . . 4 {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} = ({𝑦 ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))} ∩ 𝒫 ℝ)
1614, 15eqtr4i 2676 . . 3 dom vol = {𝑦 ∈ 𝒫 ℝ ∣ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝑦)) + (vol*‘(𝑥𝑦)))}
177, 16elrab2 3399 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
18 reex 10065 . . . 4 ℝ ∈ V
1918elpw2 4858 . . 3 (𝐴 ∈ 𝒫 ℝ ↔ 𝐴 ⊆ ℝ)
20 ffn 6083 . . . . . . 7 (vol*:𝒫 ℝ⟶(0[,]+∞) → vol* Fn 𝒫 ℝ)
21 elpreima 6377 . . . . . . 7 (vol* Fn 𝒫 ℝ → (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
2211, 20, 21mp2b 10 . . . . . 6 (𝑥 ∈ (vol* “ ℝ) ↔ (𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ))
2322imbi1i 338 . . . . 5 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
24 impexp 461 . . . . 5 (((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2523, 24bitri 264 . . . 4 ((𝑥 ∈ (vol* “ ℝ) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2625ralbii2 3007 . . 3 (∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))))
2719, 26anbi12i 733 . 2 ((𝐴 ∈ 𝒫 ℝ ∧ ∀𝑥 ∈ (vol* “ ℝ)(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2817, 27bitri 264 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {cab 2637  wral 2941  {crab 2945  cdif 3604  cin 3606  wss 3607  𝒫 cpw 4191  ccnv 5142  dom cdm 5143  cres 5145  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974   + caddc 9977  +∞cpnf 10109  [,]cicc 12216  vol*covol 23277  volcvol 23278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-ovol 23279  df-vol 23280
This theorem is referenced by:  ismbl2  23341  mblss  23345  mblsplit  23346  cmmbl  23348  shftmbl  23352  voliunlem2  23365
  Copyright terms: Public domain W3C validator