MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl2 Structured version   Visualization version   GIF version

Theorem ismbl2 24055
Description: From ovolun 24027, it suffices to show that the measure of 𝑥 is at least the sum of the measures of 𝑥𝐴 and 𝑥𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
ismbl2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl2
StepHypRef Expression
1 ismbl 24054 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2 elpwi 4547 . . . . 5 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inundif 4423 . . . . . . . . . 10 ((𝑥𝐴) ∪ (𝑥𝐴)) = 𝑥
43fveq2i 6666 . . . . . . . . 9 (vol*‘((𝑥𝐴) ∪ (𝑥𝐴))) = (vol*‘𝑥)
5 inss1 4202 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
6 simprl 767 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ)
75, 6sstrid 3975 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (𝑥𝐴) ⊆ ℝ)
8 ovolsscl 24014 . . . . . . . . . . . 12 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
95, 8mp3an1 1439 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
109adantl 482 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℝ)
11 difss 4105 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
1211, 6sstrid 3975 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (𝑥𝐴) ⊆ ℝ)
13 ovolsscl 24014 . . . . . . . . . . . 12 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1411, 13mp3an1 1439 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1514adantl 482 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℝ)
16 ovolun 24027 . . . . . . . . . 10 ((((𝑥𝐴) ⊆ ℝ ∧ (vol*‘(𝑥𝐴)) ∈ ℝ) ∧ ((𝑥𝐴) ⊆ ℝ ∧ (vol*‘(𝑥𝐴)) ∈ ℝ)) → (vol*‘((𝑥𝐴) ∪ (𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
177, 10, 12, 15, 16syl22anc 834 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘((𝑥𝐴) ∪ (𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
184, 17eqbrtrrid 5093 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
19 simprr 769 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ∈ ℝ)
2010, 15readdcld 10658 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ∈ ℝ)
2119, 20letri3d 10770 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ∧ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2218, 21mpbirand 703 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2322expr 457 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2423pm5.74d 274 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ⊆ ℝ) → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
252, 24sylan2 592 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝒫 ℝ) → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2625ralbidva 3193 . . 3 (𝐴 ⊆ ℝ → (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2726pm5.32i 575 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
281, 27bitri 276 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  cdif 3930  cun 3931  cin 3932  wss 3933  𝒫 cpw 4535   class class class wbr 5057  dom cdm 5548  cfv 6348  (class class class)co 7145  cr 10524   + caddc 10528  cle 10664  vol*covol 23990  volcvol 23991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-ovol 23992  df-vol 23993
This theorem is referenced by:  nulmbl  24063  nulmbl2  24064  unmbl  24065  ioombl1  24090  uniioombl  24117  ismblfin  34814  ismbl3  42148
  Copyright terms: Public domain W3C validator