Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl4 Structured version   Visualization version   GIF version

Theorem ismbl4 42285
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl 24130, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl4 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl4
StepHypRef Expression
1 ismbl3 42278 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2 elpwi 4551 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 ovolcl 24082 . . . . . . . . 9 (𝑥 ⊆ ℝ → (vol*‘𝑥) ∈ ℝ*)
42, 3syl 17 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ ℝ*)
54adantr 483 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) ∈ ℝ*)
6 inss1 4208 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
76, 2sstrid 3981 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
8 ovolcl 24082 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
97, 8syl 17 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
102ssdifssd 4122 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
11 ovolcl 24082 . . . . . . . . . 10 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
1210, 11syl 17 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
139, 12xaddcld 12697 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
1413adantr 483 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
152ovolsplit 42280 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
1615adantr 483 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
17 simpr 487 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
185, 14, 16, 17xrletrid 12551 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
1918ex 415 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
2013xrleidd 12548 . . . . . . . 8 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2120adantr 483 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
22 id 22 . . . . . . . . 9 ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2322eqcomd 2830 . . . . . . . 8 ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = (vol*‘𝑥))
2423adantl 484 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = (vol*‘𝑥))
2521, 24breqtrd 5095 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
2625ex 415 . . . . 5 (𝑥 ∈ 𝒫 ℝ → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2719, 26impbid 214 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ↔ (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
2827ralbiia 3167 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ↔ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
2928anbi2i 624 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
301, 29bitri 277 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ(vol*‘𝑥) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  cdif 3936  cin 3938  wss 3939  𝒫 cpw 4542   class class class wbr 5069  dom cdm 5558  cfv 6358  (class class class)co 7159  cr 10539  *cxr 10677  cle 10679   +𝑒 cxad 12508  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-ovol 24068  df-vol 24069
This theorem is referenced by:  vonvolmbl  42950
  Copyright terms: Public domain W3C validator