Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismgmhm Structured version   Visualization version   GIF version

Theorem ismgmhm 41554
Description: Property of a magma homomorphism. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
ismgmhm.b 𝐵 = (Base‘𝑆)
ismgmhm.c 𝐶 = (Base‘𝑇)
ismgmhm.p + = (+g𝑆)
ismgmhm.q = (+g𝑇)
Assertion
Ref Expression
ismgmhm (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   + (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ismgmhm
Dummy variables 𝑓 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 41552 . 2 (𝐹 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
2 fveq2 6087 . . . . . . . 8 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
3 ismgmhm.c . . . . . . . 8 𝐶 = (Base‘𝑇)
42, 3syl6eqr 2661 . . . . . . 7 (𝑡 = 𝑇 → (Base‘𝑡) = 𝐶)
5 fveq2 6087 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
6 ismgmhm.b . . . . . . . 8 𝐵 = (Base‘𝑆)
75, 6syl6eqr 2661 . . . . . . 7 (𝑠 = 𝑆 → (Base‘𝑠) = 𝐵)
84, 7oveqan12rd 6546 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) = (𝐶𝑚 𝐵))
97adantr 479 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (Base‘𝑠) = 𝐵)
10 fveq2 6087 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
11 ismgmhm.p . . . . . . . . . . . 12 + = (+g𝑆)
1210, 11syl6eqr 2661 . . . . . . . . . . 11 (𝑠 = 𝑆 → (+g𝑠) = + )
1312oveqd 6543 . . . . . . . . . 10 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥 + 𝑦))
1413fveq2d 6091 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑓‘(𝑥(+g𝑠)𝑦)) = (𝑓‘(𝑥 + 𝑦)))
15 fveq2 6087 . . . . . . . . . . 11 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
16 ismgmhm.q . . . . . . . . . . 11 = (+g𝑇)
1715, 16syl6eqr 2661 . . . . . . . . . 10 (𝑡 = 𝑇 → (+g𝑡) = )
1817oveqd 6543 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥) (𝑓𝑦)))
1914, 18eqeqan12d 2625 . . . . . . . 8 ((𝑠 = 𝑆𝑡 = 𝑇) → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
209, 19raleqbidv 3128 . . . . . . 7 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
219, 20raleqbidv 3128 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))))
228, 21rabeqbidv 3167 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))} = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))})
23 df-mgmhm 41550 . . . . 5 MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))})
24 ovex 6554 . . . . . 6 (𝐶𝑚 𝐵) ∈ V
2524rabex 4734 . . . . 5 {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))} ∈ V
2622, 23, 25ovmpt2a 6666 . . . 4 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝑆 MgmHom 𝑇) = {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))})
2726eleq2d 2672 . . 3 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ 𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))}))
28 fveq1 6086 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 𝑦)) = (𝐹‘(𝑥 + 𝑦)))
29 fveq1 6086 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
30 fveq1 6086 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
3129, 30oveq12d 6544 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
3228, 31eqeq12d 2624 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
33322ralbidv 2971 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
3433elrab 3330 . . . 4 (𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))} ↔ (𝐹 ∈ (𝐶𝑚 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
35 fvex 6097 . . . . . . 7 (Base‘𝑇) ∈ V
363, 35eqeltri 2683 . . . . . 6 𝐶 ∈ V
37 fvex 6097 . . . . . . 7 (Base‘𝑆) ∈ V
386, 37eqeltri 2683 . . . . . 6 𝐵 ∈ V
3936, 38elmap 7749 . . . . 5 (𝐹 ∈ (𝐶𝑚 𝐵) ↔ 𝐹:𝐵𝐶)
4039anbi1i 726 . . . 4 ((𝐹 ∈ (𝐶𝑚 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
4134, 40bitri 262 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐶𝑚 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 (𝑓‘(𝑥 + 𝑦)) = ((𝑓𝑥) (𝑓𝑦))} ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
4227, 41syl6bb 274 . 2 ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) → (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
431, 42biadan2 671 1 (𝐹 ∈ (𝑆 MgmHom 𝑇) ↔ ((𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  {crab 2899  Vcvv 3172  wf 5785  cfv 5789  (class class class)co 6526  𝑚 cmap 7721  Basecbs 15643  +gcplusg 15716  Mgmcmgm 17011   MgmHom cmgmhm 41548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-fv 5797  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-map 7723  df-mgmhm 41550
This theorem is referenced by:  mgmhmf  41555  mgmhmpropd  41556  mgmhmlin  41557  mgmhmf1o  41558  idmgmhm  41559  resmgmhm  41569  resmgmhm2  41570  resmgmhm2b  41571  mgmhmco  41572  ismhm0  41576  mhmismgmhm  41577  isrnghmmul  41664  c0mgm  41680  c0snmgmhm  41685
  Copyright terms: Public domain W3C validator