MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmid2 Structured version   Visualization version   GIF version

Theorem ismgmid2 17872
Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
ismgmid2.u (𝜑𝑈𝐵)
ismgmid2.l ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
ismgmid2.r ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
Assertion
Ref Expression
ismgmid2 (𝜑𝑈 = 0 )
Distinct variable groups:   𝑥, +   𝑥, 0   𝑥,𝐵   𝑥,𝐺   𝑥,𝑈   𝜑,𝑥

Proof of Theorem ismgmid2
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ismgmid2.u . . 3 (𝜑𝑈𝐵)
2 ismgmid2.l . . . . 5 ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)
3 ismgmid2.r . . . . 5 ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)
42, 3jca 514 . . . 4 ((𝜑𝑥𝐵) → ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
54ralrimiva 3182 . . 3 (𝜑 → ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))
6 ismgmid.b . . . 4 𝐵 = (Base‘𝐺)
7 ismgmid.o . . . 4 0 = (0g𝐺)
8 ismgmid.p . . . 4 + = (+g𝐺)
9 oveq1 7157 . . . . . . . 8 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
109eqeq1d 2823 . . . . . . 7 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
1110ovanraleqv 7174 . . . . . 6 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
1211rspcev 3622 . . . . 5 ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
131, 5, 12syl2anc 586 . . . 4 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
146, 7, 8, 13ismgmid 17869 . . 3 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
151, 5, 14mpbi2and 710 . 2 (𝜑0 = 𝑈)
1615eqcomd 2827 1 (𝜑𝑈 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  0gc0g 16707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-riota 7108  df-ov 7153  df-0g 16709
This theorem is referenced by:  lidrididd  17874  grpidd  17875  submnd0  17934  mnd1id  17947  frmd0  18019  efmndid  18047  pwmndid  18095  mhmid  18214  cnaddid  18984  ringidss  19321  xrs10  20578
  Copyright terms: Public domain W3C validator