![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismndo | Structured version Visualization version GIF version |
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ismndo.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
ismndo | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mndo 33796 | . . 3 ⊢ MndOp = (SemiGrp ∩ ExId ) | |
2 | 1 | eleq2i 2722 | . 2 ⊢ (𝐺 ∈ MndOp ↔ 𝐺 ∈ (SemiGrp ∩ ExId )) |
3 | elin 3829 | . . 3 ⊢ (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId )) | |
4 | ismndo.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
5 | 4 | isexid 33776 | . . . 4 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
6 | 5 | anbi2d 740 | . . 3 ⊢ (𝐺 ∈ 𝐴 → ((𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
7 | 3, 6 | syl5bb 272 | . 2 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ (SemiGrp ∩ ExId ) ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
8 | 2, 7 | syl5bb 272 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∩ cin 3606 dom cdm 5143 (class class class)co 6690 ExId cexid 33773 SemiGrpcsem 33789 MndOpcmndo 33795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-dm 5153 df-iota 5889 df-fv 5934 df-ov 6693 df-exid 33774 df-mndo 33796 |
This theorem is referenced by: ismndo1 33802 |
Copyright terms: Public domain | W3C validator |