Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrcd2 Structured version   Visualization version   GIF version

Theorem ismrcd2 36777
 Description: Second half of ismrcd1 36776. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
ismrcd.b (𝜑𝐵𝑉)
ismrcd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
ismrcd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
ismrcd.m ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
ismrcd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
Assertion
Ref Expression
ismrcd2 (𝜑𝐹 = (mrCls‘dom (𝐹 ∩ I )))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦

Proof of Theorem ismrcd2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ismrcd.f . . 3 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
2 ffn 6007 . . 3 (𝐹:𝒫 𝐵⟶𝒫 𝐵𝐹 Fn 𝒫 𝐵)
31, 2syl 17 . 2 (𝜑𝐹 Fn 𝒫 𝐵)
4 ismrcd.b . . . 4 (𝜑𝐵𝑉)
5 ismrcd.e . . . 4 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
6 ismrcd.m . . . 4 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
7 ismrcd.i . . . 4 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
84, 1, 5, 6, 7ismrcd1 36776 . . 3 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
9 eqid 2621 . . . 4 (mrCls‘dom (𝐹 ∩ I )) = (mrCls‘dom (𝐹 ∩ I ))
109mrcf 16201 . . 3 (dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) → (mrCls‘dom (𝐹 ∩ I )):𝒫 𝐵⟶dom (𝐹 ∩ I ))
11 ffn 6007 . . 3 ((mrCls‘dom (𝐹 ∩ I )):𝒫 𝐵⟶dom (𝐹 ∩ I ) → (mrCls‘dom (𝐹 ∩ I )) Fn 𝒫 𝐵)
128, 10, 113syl 18 . 2 (𝜑 → (mrCls‘dom (𝐹 ∩ I )) Fn 𝒫 𝐵)
138, 9mrcssvd 16215 . . . . . 6 (𝜑 → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)
1413adantr 481 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)
15 elpwi 4145 . . . . . 6 (𝑧 ∈ 𝒫 𝐵𝑧𝐵)
169mrcssid 16209 . . . . . 6 ((dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) ∧ 𝑧𝐵) → 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))
178, 15, 16syl2an 494 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → 𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))
1863expib 1265 . . . . . . . 8 (𝜑 → ((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
1918alrimivv 1853 . . . . . . 7 (𝜑 → ∀𝑦𝑥((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)))
20 vex 3192 . . . . . . . 8 𝑧 ∈ V
21 fvex 6163 . . . . . . . 8 ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ V
22 sseq1 3610 . . . . . . . . . . . 12 (𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) → (𝑥𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵))
2322adantl 482 . . . . . . . . . . 11 ((𝑦 = 𝑧𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝑥𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵))
24 sseq12 3612 . . . . . . . . . . 11 ((𝑦 = 𝑧𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝑦𝑥𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))
2523, 24anbi12d 746 . . . . . . . . . 10 ((𝑦 = 𝑧𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → ((𝑥𝐵𝑦𝑥) ↔ (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))
26 fveq2 6153 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
27 fveq2 6153 . . . . . . . . . . 11 (𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) → (𝐹𝑥) = (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))
28 sseq12 3612 . . . . . . . . . . 11 (((𝐹𝑦) = (𝐹𝑧) ∧ (𝐹𝑥) = (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))) → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))
2926, 27, 28syl2an 494 . . . . . . . . . 10 ((𝑦 = 𝑧𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))
3025, 29imbi12d 334 . . . . . . . . 9 ((𝑦 = 𝑧𝑥 = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) ↔ ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))))
3130spc2gv 3285 . . . . . . . 8 ((𝑧 ∈ V ∧ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ V) → (∀𝑦𝑥((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))))
3220, 21, 31mp2an 707 . . . . . . 7 (∀𝑦𝑥((𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥)) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))
3319, 32syl 17 . . . . . 6 (𝜑 → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))
3433adantr 481 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵𝑧 ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) → (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧))))
3514, 17, 34mp2and 714 . . . 4 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹𝑧) ⊆ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))
369mrccl 16203 . . . . . 6 ((dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) ∧ 𝑧𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ))
378, 15, 36syl2an 494 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ))
383adantr 481 . . . . . 6 ((𝜑𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵)
3921elpw 4141 . . . . . . . 8 (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵 ↔ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ 𝐵)
4013, 39sylibr 224 . . . . . . 7 (𝜑 → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵)
4140adantr 481 . . . . . 6 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵)
42 fnelfp 6401 . . . . . 6 ((𝐹 Fn 𝒫 𝐵 ∧ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ 𝒫 𝐵) → (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))
4338, 41, 42syl2anc 692 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → (((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧)))
4437, 43mpbid 222 . . . 4 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹‘((mrCls‘dom (𝐹 ∩ I ))‘𝑧)) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))
4535, 44sseqtrd 3625 . . 3 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹𝑧) ⊆ ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))
468adantr 481 . . . 4 ((𝜑𝑧 ∈ 𝒫 𝐵) → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
47 sseq1 3610 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
4847anbi2d 739 . . . . . . 7 (𝑥 = 𝑧 → ((𝜑𝑥𝐵) ↔ (𝜑𝑧𝐵)))
49 id 22 . . . . . . . 8 (𝑥 = 𝑧𝑥 = 𝑧)
50 fveq2 6153 . . . . . . . 8 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
5149, 50sseq12d 3618 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑧 ⊆ (𝐹𝑧)))
5248, 51imbi12d 334 . . . . . 6 (𝑥 = 𝑧 → (((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝜑𝑧𝐵) → 𝑧 ⊆ (𝐹𝑧))))
5352, 5chvarv 2262 . . . . 5 ((𝜑𝑧𝐵) → 𝑧 ⊆ (𝐹𝑧))
5415, 53sylan2 491 . . . 4 ((𝜑𝑧 ∈ 𝒫 𝐵) → 𝑧 ⊆ (𝐹𝑧))
5550fveq2d 6157 . . . . . . . . 9 (𝑥 = 𝑧 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑧)))
5655, 50eqeq12d 2636 . . . . . . . 8 (𝑥 = 𝑧 → ((𝐹‘(𝐹𝑥)) = (𝐹𝑥) ↔ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))
5748, 56imbi12d 334 . . . . . . 7 (𝑥 = 𝑧 → (((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥)) ↔ ((𝜑𝑧𝐵) → (𝐹‘(𝐹𝑧)) = (𝐹𝑧))))
5857, 7chvarv 2262 . . . . . 6 ((𝜑𝑧𝐵) → (𝐹‘(𝐹𝑧)) = (𝐹𝑧))
5915, 58sylan2 491 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹‘(𝐹𝑧)) = (𝐹𝑧))
601ffvelrnda 6320 . . . . . 6 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹𝑧) ∈ 𝒫 𝐵)
61 fnelfp 6401 . . . . . 6 ((𝐹 Fn 𝒫 𝐵 ∧ (𝐹𝑧) ∈ 𝒫 𝐵) → ((𝐹𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))
6238, 60, 61syl2anc 692 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐹𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐹𝑧)) = (𝐹𝑧)))
6359, 62mpbird 247 . . . 4 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹𝑧) ∈ dom (𝐹 ∩ I ))
649mrcsscl 16212 . . . 4 ((dom (𝐹 ∩ I ) ∈ (Moore‘𝐵) ∧ 𝑧 ⊆ (𝐹𝑧) ∧ (𝐹𝑧) ∈ dom (𝐹 ∩ I )) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ (𝐹𝑧))
6546, 54, 63, 64syl3anc 1323 . . 3 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((mrCls‘dom (𝐹 ∩ I ))‘𝑧) ⊆ (𝐹𝑧))
6645, 65eqssd 3604 . 2 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐹𝑧) = ((mrCls‘dom (𝐹 ∩ I ))‘𝑧))
673, 12, 66eqfnfvd 6275 1 (𝜑𝐹 = (mrCls‘dom (𝐹 ∩ I )))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036  ∀wal 1478   = wceq 1480   ∈ wcel 1987  Vcvv 3189   ∩ cin 3558   ⊆ wss 3559  𝒫 cpw 4135   I cid 4989  dom cdm 5079   Fn wfn 5847  ⟶wf 5848  ‘cfv 5852  Moorecmre 16174  mrClscmrc 16175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-mre 16178  df-mrc 16179 This theorem is referenced by:  istopclsd  36778  ismrc  36779
 Copyright terms: Public domain W3C validator