MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred Structured version   Visualization version   GIF version

Theorem ismred 16183
Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ismred.ss (𝜑𝐶 ⊆ 𝒫 𝑋)
ismred.ba (𝜑𝑋𝐶)
ismred.in ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
Assertion
Ref Expression
ismred (𝜑𝐶 ∈ (Moore‘𝑋))
Distinct variable groups:   𝜑,𝑠   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismred
StepHypRef Expression
1 ismred.ss . 2 (𝜑𝐶 ⊆ 𝒫 𝑋)
2 ismred.ba . 2 (𝜑𝑋𝐶)
3 selpw 4137 . . . 4 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
4 ismred.in . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
543expia 1264 . . . 4 ((𝜑𝑠𝐶) → (𝑠 ≠ ∅ → 𝑠𝐶))
63, 5sylan2b 492 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐶) → (𝑠 ≠ ∅ → 𝑠𝐶))
76ralrimiva 2960 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
8 ismre 16171 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
91, 2, 7, 8syl3anbrc 1244 1 (𝜑𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036  wcel 1987  wne 2790  wral 2907  wss 3555  c0 3891  𝒫 cpw 4130   cint 4440  cfv 5847  Moorecmre 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-mre 16167
This theorem is referenced by:  ismred2  16184  mremre  16185  submre  16186  subrgmre  18725  lssmre  18885  cssmre  19956  cldmre  20792  toponmre  20807  ismrcd1  36738
  Copyright terms: Public domain W3C validator