MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred2 Structured version   Visualization version   GIF version

Theorem ismred2 16187
Description: Properties that determine a Moore collection, using restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypotheses
Ref Expression
ismred2.ss (𝜑𝐶 ⊆ 𝒫 𝑋)
ismred2.in ((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶)
Assertion
Ref Expression
ismred2 (𝜑𝐶 ∈ (Moore‘𝑋))
Distinct variable groups:   𝜑,𝑠   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismred2
StepHypRef Expression
1 ismred2.ss . 2 (𝜑𝐶 ⊆ 𝒫 𝑋)
2 eqid 2621 . . . 4 ∅ = ∅
3 rint0 4484 . . . 4 (∅ = ∅ → (𝑋 ∅) = 𝑋)
42, 3ax-mp 5 . . 3 (𝑋 ∅) = 𝑋
5 0ss 3946 . . . 4 ∅ ⊆ 𝐶
6 0ex 4752 . . . . 5 ∅ ∈ V
7 sseq1 3607 . . . . . . 7 (𝑠 = ∅ → (𝑠𝐶 ↔ ∅ ⊆ 𝐶))
87anbi2d 739 . . . . . 6 (𝑠 = ∅ → ((𝜑𝑠𝐶) ↔ (𝜑 ∧ ∅ ⊆ 𝐶)))
9 inteq 4445 . . . . . . . 8 (𝑠 = ∅ → 𝑠 = ∅)
109ineq2d 3794 . . . . . . 7 (𝑠 = ∅ → (𝑋 𝑠) = (𝑋 ∅))
1110eleq1d 2683 . . . . . 6 (𝑠 = ∅ → ((𝑋 𝑠) ∈ 𝐶 ↔ (𝑋 ∅) ∈ 𝐶))
128, 11imbi12d 334 . . . . 5 (𝑠 = ∅ → (((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶) ↔ ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∅) ∈ 𝐶)))
13 ismred2.in . . . . 5 ((𝜑𝑠𝐶) → (𝑋 𝑠) ∈ 𝐶)
146, 12, 13vtocl 3245 . . . 4 ((𝜑 ∧ ∅ ⊆ 𝐶) → (𝑋 ∅) ∈ 𝐶)
155, 14mpan2 706 . . 3 (𝜑 → (𝑋 ∅) ∈ 𝐶)
164, 15syl5eqelr 2703 . 2 (𝜑𝑋𝐶)
17 simp2 1060 . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
1813ad2ant1 1080 . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝐶 ⊆ 𝒫 𝑋)
1917, 18sstrd 3594 . . . 4 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠 ⊆ 𝒫 𝑋)
20 simp3 1061 . . . 4 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠 ≠ ∅)
21 rintn0 4584 . . . 4 ((𝑠 ⊆ 𝒫 𝑋𝑠 ≠ ∅) → (𝑋 𝑠) = 𝑠)
2219, 20, 21syl2anc 692 . . 3 ((𝜑𝑠𝐶𝑠 ≠ ∅) → (𝑋 𝑠) = 𝑠)
23133adant3 1079 . . 3 ((𝜑𝑠𝐶𝑠 ≠ ∅) → (𝑋 𝑠) ∈ 𝐶)
2422, 23eqeltrrd 2699 . 2 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
251, 16, 24ismred 16186 1 (𝜑𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cin 3555  wss 3556  c0 3893  𝒫 cpw 4132   cint 4442  cfv 5849  Moorecmre 16166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-int 4443  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-iota 5812  df-fun 5851  df-fv 5857  df-mre 16170
This theorem is referenced by:  isacs1i  16242  mreacs  16243
  Copyright terms: Public domain W3C validator