MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismri2dd Structured version   Visualization version   GIF version

Theorem ismri2dd 16288
Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ismri2.1 𝑁 = (mrCls‘𝐴)
ismri2.2 𝐼 = (mrInd‘𝐴)
ismri2d.3 (𝜑𝐴 ∈ (Moore‘𝑋))
ismri2d.4 (𝜑𝑆𝑋)
ismri2dd.5 (𝜑 → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
Assertion
Ref Expression
ismri2dd (𝜑𝑆𝐼)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem ismri2dd
StepHypRef Expression
1 ismri2dd.5 . 2 (𝜑 → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
2 ismri2.1 . . 3 𝑁 = (mrCls‘𝐴)
3 ismri2.2 . . 3 𝐼 = (mrInd‘𝐴)
4 ismri2d.3 . . 3 (𝜑𝐴 ∈ (Moore‘𝑋))
5 ismri2d.4 . . 3 (𝜑𝑆𝑋)
62, 3, 4, 5ismri2d 16287 . 2 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
71, 6mpbird 247 1 (𝜑𝑆𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1482  wcel 1989  wral 2911  cdif 3569  wss 3572  {csn 4175  cfv 5886  Moorecmre 16236  mrClscmrc 16237  mrIndcmri 16238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-iota 5849  df-fun 5888  df-fv 5894  df-mre 16240  df-mri 16242
This theorem is referenced by:  mrissmrid  16295  mreexmrid  16297  acsfiindd  17171
  Copyright terms: Public domain W3C validator