Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeo Structured version   Visualization version   GIF version

Theorem ismtyhmeo 33917
 Description: An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
Assertion
Ref Expression
ismtyhmeo ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾))

Proof of Theorem ismtyhmeo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ismtyhmeo.1 . . . . 5 𝐽 = (MetOpen‘𝑀)
2 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
3 simpll 807 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑀 ∈ (∞Met‘𝑋))
4 simplr 809 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑁 ∈ (∞Met‘𝑌))
5 simpr 479 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝑀 Ismty 𝑁))
61, 2, 3, 4, 5ismtyhmeolem 33916 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽 Cn 𝐾))
7 ismtycnv 33914 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → 𝑓 ∈ (𝑁 Ismty 𝑀)))
87imp 444 . . . . 5 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝑁 Ismty 𝑀))
92, 1, 4, 3, 8ismtyhmeolem 33916 . . . 4 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐾 Cn 𝐽))
10 ishmeo 21764 . . . 4 (𝑓 ∈ (𝐽Homeo𝐾) ↔ (𝑓 ∈ (𝐽 Cn 𝐾) ∧ 𝑓 ∈ (𝐾 Cn 𝐽)))
116, 9, 10sylanbrc 701 . . 3 (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ 𝑓 ∈ (𝑀 Ismty 𝑁)) → 𝑓 ∈ (𝐽Homeo𝐾))
1211ex 449 . 2 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑓 ∈ (𝑀 Ismty 𝑁) → 𝑓 ∈ (𝐽Homeo𝐾)))
1312ssrdv 3750 1 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ⊆ wss 3715  ◡ccnv 5265  ‘cfv 6049  (class class class)co 6813  ∞Metcxmt 19933  MetOpencmopn 19938   Cn ccn 21230  Homeochmeo 21758   Ismty cismty 33910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-topgen 16306  df-psmet 19940  df-xmet 19941  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-bases 20952  df-cn 21233  df-hmeo 21760  df-ismty 33911 This theorem is referenced by:  reheibor  33951
 Copyright terms: Public domain W3C validator