MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isncvsngp Structured version   Visualization version   GIF version

Theorem isncvsngp 22930
Description: A normed subcomplex vector space is a subcomplex vector space which is a normed group with a positively homogeneous norm. (Contributed by NM, 5-Jun-2008.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
isncvsngp.v 𝑉 = (Base‘𝑊)
isncvsngp.n 𝑁 = (norm‘𝑊)
isncvsngp.s · = ( ·𝑠𝑊)
isncvsngp.f 𝐹 = (Scalar‘𝑊)
isncvsngp.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
isncvsngp (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐾,𝑥   𝑘,𝑁,𝑥   𝑘,𝑉,𝑥   𝑘,𝑊,𝑥   · ,𝑘,𝑥

Proof of Theorem isncvsngp
StepHypRef Expression
1 isnvc 22480 . . . . . 6 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec))
2 ancom 466 . . . . . 6 ((𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod))
31, 2bitri 264 . . . . 5 (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod))
43a1i 11 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
5 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
65cvslvec 22906 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ LVec)
76biantrurd 529 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ LVec ∧ 𝑊 ∈ NrmMod)))
85cvsclm 22907 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
9 isncvsngp.v . . . . . . 7 𝑉 = (Base‘𝑊)
10 isncvsngp.n . . . . . . 7 𝑁 = (norm‘𝑊)
11 isncvsngp.s . . . . . . 7 · = ( ·𝑠𝑊)
12 isncvsngp.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
13 isncvsngp.k . . . . . . 7 𝐾 = (Base‘𝐹)
14 eqid 2620 . . . . . . 7 (norm‘𝐹) = (norm‘𝐹)
159, 10, 11, 12, 13, 14isnlm 22460 . . . . . 6 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
16 3anass 1040 . . . . . . . . . . 11 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ NrmGrp ∧ (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)))
17 ancom 466 . . . . . . . . . . 11 ((𝑊 ∈ NrmGrp ∧ (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp))
1816, 17bitri 264 . . . . . . . . . 10 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp))
1918anbi1i 730 . . . . . . . . 9 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))
20 anass 680 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ 𝑊 ∈ NrmGrp) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
2119, 20bitri 264 . . . . . . . 8 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))))
2221a1i 11 . . . . . . 7 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
23 clmlmod 22848 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
2412, 13clmsca 22846 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
25 cnnrg 22565 . . . . . . . . . . 11 fld ∈ NrmRing
2612, 13clmsubrg 22847 . . . . . . . . . . 11 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
27 eqid 2620 . . . . . . . . . . . 12 (ℂflds 𝐾) = (ℂflds 𝐾)
2827subrgnrg 22458 . . . . . . . . . . 11 ((ℂfld ∈ NrmRing ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) ∈ NrmRing)
2925, 26, 28sylancr 694 . . . . . . . . . 10 (𝑊 ∈ ℂMod → (ℂflds 𝐾) ∈ NrmRing)
3024, 29eqeltrd 2699 . . . . . . . . 9 (𝑊 ∈ ℂMod → 𝐹 ∈ NrmRing)
3123, 30jca 554 . . . . . . . 8 (𝑊 ∈ ℂMod → (𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing))
3231biantrurd 529 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ ((𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))))))
33 ralcom 3093 . . . . . . . . 9 (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)))
3424fveq2d 6182 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
35 subrgsubg 18767 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
36 eqid 2620 . . . . . . . . . . . . . . . . . 18 (norm‘ℂfld) = (norm‘ℂfld)
37 eqid 2620 . . . . . . . . . . . . . . . . . 18 (norm‘(ℂflds 𝐾)) = (norm‘(ℂflds 𝐾))
3827, 36, 37subgnm 22418 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (SubGrp‘ℂfld) → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
3926, 35, 383syl 18 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → (norm‘(ℂflds 𝐾)) = ((norm‘ℂfld) ↾ 𝐾))
4034, 39eqtrd 2654 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂMod → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
4140adantr 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (norm‘𝐹) = ((norm‘ℂfld) ↾ 𝐾))
4241fveq1d 6180 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (((norm‘ℂfld) ↾ 𝐾)‘𝑘))
43 cnfldnm 22563 . . . . . . . . . . . . . . . . 17 abs = (norm‘ℂfld)
4443eqcomi 2629 . . . . . . . . . . . . . . . 16 (norm‘ℂfld) = abs
4544reseq1i 5381 . . . . . . . . . . . . . . 15 ((norm‘ℂfld) ↾ 𝐾) = (abs ↾ 𝐾)
4645fveq1i 6179 . . . . . . . . . . . . . 14 (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = ((abs ↾ 𝐾)‘𝑘)
47 fvres 6194 . . . . . . . . . . . . . . 15 (𝑘𝐾 → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4847ad2antll 764 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((abs ↾ 𝐾)‘𝑘) = (abs‘𝑘))
4946, 48syl5eq 2666 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘ℂfld) ↾ 𝐾)‘𝑘) = (abs‘𝑘))
5042, 49eqtrd 2654 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((norm‘𝐹)‘𝑘) = (abs‘𝑘))
5150oveq1d 6650 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))
5251eqeq2d 2630 . . . . . . . . . 10 ((𝑊 ∈ ℂMod ∧ (𝑥𝑉𝑘𝐾)) → ((𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
53522ralbidva 2985 . . . . . . . . 9 (𝑊 ∈ ℂMod → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5433, 53syl5bb 272 . . . . . . . 8 (𝑊 ∈ ℂMod → (∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥)) ↔ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
5554anbi2d 739 . . . . . . 7 (𝑊 ∈ ℂMod → ((𝑊 ∈ NrmGrp ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5622, 32, 553bitr2d 296 . . . . . 6 (𝑊 ∈ ℂMod → (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑘𝐾𝑥𝑉 (𝑁‘(𝑘 · 𝑥)) = (((norm‘𝐹)‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
5715, 56syl5bb 272 . . . . 5 (𝑊 ∈ ℂMod → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
588, 57syl 17 . . . 4 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmMod ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
594, 7, 583bitr2d 296 . . 3 (𝑊 ∈ ℂVec → (𝑊 ∈ NrmVec ↔ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
6059pm5.32i 668 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
61 elin 3788 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
62 ancom 466 . . 3 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec))
6361, 62bitri 264 . 2 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmVec))
64 3anass 1040 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) ↔ (𝑊 ∈ ℂVec ∧ (𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
6560, 63, 643bitr4i 292 1 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  cin 3566  cres 5106  cfv 5876  (class class class)co 6635   · cmul 9926  abscabs 13955  Basecbs 15838  s cress 15839  Scalarcsca 15925   ·𝑠 cvsca 15926  SubGrpcsubg 17569  SubRingcsubrg 18757  LModclmod 18844  LVecclvec 19083  fldccnfld 19727  normcnm 22362  NrmGrpcngp 22363  NrmRingcnrg 22365  NrmModcnlm 22366  NrmVeccnvc 22367  ℂModcclm 22843  ℂVecccvs 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ico 12166  df-fz 12312  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-rest 16064  df-topn 16065  df-0g 16083  df-topgen 16085  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-cmn 18176  df-mgp 18471  df-ring 18530  df-cring 18531  df-subrg 18759  df-abv 18798  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-xms 22106  df-ms 22107  df-nm 22368  df-ngp 22369  df-nrg 22371  df-nlm 22372  df-nvc 22373  df-clm 22844  df-cvs 22905
This theorem is referenced by:  isncvsngpd  22931  ncvsi  22932
  Copyright terms: Public domain W3C validator