MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp2 Structured version   Visualization version   GIF version

Theorem isngp2 22623
Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
isngp.n 𝑁 = (norm‘𝐺)
isngp.z = (-g𝐺)
isngp.d 𝐷 = (dist‘𝐺)
isngp2.x 𝑋 = (Base‘𝐺)
isngp2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isngp2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))

Proof of Theorem isngp2
StepHypRef Expression
1 isngp.n . . 3 𝑁 = (norm‘𝐺)
2 isngp.z . . 3 = (-g𝐺)
3 isngp.d . . 3 𝐷 = (dist‘𝐺)
41, 2, 3isngp 22622 . 2 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
5 isngp2.e . . . . . . 7 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
6 resss 5581 . . . . . . 7 (𝐷 ↾ (𝑋 × 𝑋)) ⊆ 𝐷
75, 6eqsstri 3777 . . . . . 6 𝐸𝐷
8 sseq1 3768 . . . . . 6 ((𝑁 ) = 𝐸 → ((𝑁 ) ⊆ 𝐷𝐸𝐷))
97, 8mpbiri 248 . . . . 5 ((𝑁 ) = 𝐸 → (𝑁 ) ⊆ 𝐷)
10 isngp2.x . . . . . . . . . . . . 13 𝑋 = (Base‘𝐺)
113reseq1i 5548 . . . . . . . . . . . . . 14 (𝐷 ↾ (𝑋 × 𝑋)) = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
125, 11eqtri 2783 . . . . . . . . . . . . 13 𝐸 = ((dist‘𝐺) ↾ (𝑋 × 𝑋))
1310, 12msmet 22484 . . . . . . . . . . . 12 (𝐺 ∈ MetSp → 𝐸 ∈ (Met‘𝑋))
141, 10, 3, 5nmf2 22619 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐸 ∈ (Met‘𝑋)) → 𝑁:𝑋⟶ℝ)
1513, 14sylan2 492 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → 𝑁:𝑋⟶ℝ)
1615adantr 472 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝑁:𝑋⟶ℝ)
1710, 2grpsubf 17716 . . . . . . . . . . 11 (𝐺 ∈ Grp → :(𝑋 × 𝑋)⟶𝑋)
1817ad2antrr 764 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → :(𝑋 × 𝑋)⟶𝑋)
19 fco 6220 . . . . . . . . . 10 ((𝑁:𝑋⟶ℝ ∧ :(𝑋 × 𝑋)⟶𝑋) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
2016, 18, 19syl2anc 696 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶ℝ)
21 fdm 6213 . . . . . . . . 9 ((𝑁 ):(𝑋 × 𝑋)⟶ℝ → dom (𝑁 ) = (𝑋 × 𝑋))
2220, 21syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → dom (𝑁 ) = (𝑋 × 𝑋))
2322reseq2d 5552 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝐸 ↾ (𝑋 × 𝑋)))
2410, 12msf 22485 . . . . . . . . . 10 (𝐺 ∈ MetSp → 𝐸:(𝑋 × 𝑋)⟶ℝ)
2524ad2antlr 765 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → 𝐸:(𝑋 × 𝑋)⟶ℝ)
26 ffun 6210 . . . . . . . . 9 (𝐸:(𝑋 × 𝑋)⟶ℝ → Fun 𝐸)
2725, 26syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → Fun 𝐸)
28 simpr 479 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐷)
29 ssv 3767 . . . . . . . . . . . 12 ℝ ⊆ V
30 fss 6218 . . . . . . . . . . . 12 (((𝑁 ):(𝑋 × 𝑋)⟶ℝ ∧ ℝ ⊆ V) → (𝑁 ):(𝑋 × 𝑋)⟶V)
3120, 29, 30sylancl 697 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ):(𝑋 × 𝑋)⟶V)
32 fssxp 6222 . . . . . . . . . . 11 ((𝑁 ):(𝑋 × 𝑋)⟶V → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3331, 32syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ ((𝑋 × 𝑋) × V))
3428, 33ssind 3981 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ (𝐷 ∩ ((𝑋 × 𝑋) × V)))
35 df-res 5279 . . . . . . . . . 10 (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ∩ ((𝑋 × 𝑋) × V))
365, 35eqtri 2783 . . . . . . . . 9 𝐸 = (𝐷 ∩ ((𝑋 × 𝑋) × V))
3734, 36syl6sseqr 3794 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) ⊆ 𝐸)
38 funssres 6092 . . . . . . . 8 ((Fun 𝐸 ∧ (𝑁 ) ⊆ 𝐸) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
3927, 37, 38syl2anc 696 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ dom (𝑁 )) = (𝑁 ))
40 ffn 6207 . . . . . . . 8 (𝐸:(𝑋 × 𝑋)⟶ℝ → 𝐸 Fn (𝑋 × 𝑋))
41 fnresdm 6162 . . . . . . . 8 (𝐸 Fn (𝑋 × 𝑋) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4225, 40, 413syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝐸 ↾ (𝑋 × 𝑋)) = 𝐸)
4323, 39, 423eqtr3d 2803 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷) → (𝑁 ) = 𝐸)
4443ex 449 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) ⊆ 𝐷 → (𝑁 ) = 𝐸))
459, 44impbid2 216 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → ((𝑁 ) = 𝐸 ↔ (𝑁 ) ⊆ 𝐷))
4645pm5.32i 672 . . 3 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
47 df-3an 1074 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) = 𝐸))
48 df-3an 1074 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷) ↔ ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑁 ) ⊆ 𝐷))
4946, 47, 483bitr4i 292 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸) ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) ⊆ 𝐷))
504, 49bitr4i 267 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ) = 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  Vcvv 3341  cin 3715  wss 3716   × cxp 5265  dom cdm 5267  cres 5269  ccom 5271  Fun wfun 6044   Fn wfn 6045  wf 6046  cfv 6050  cr 10148  Basecbs 16080  distcds 16173  Grpcgrp 17644  -gcsg 17646  Metcme 19955  MetSpcmt 22345  normcnm 22603  NrmGrpcngp 22604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-0g 16325  df-topgen 16327  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-minusg 17648  df-sbg 17649  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-xms 22347  df-ms 22348  df-nm 22609  df-ngp 22610
This theorem is referenced by:  isngp3  22624  ngpds  22630  ngppropd  22663  nrmtngdist  22683  nrmtngnrm  22684
  Copyright terms: Public domain W3C validator