MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp4 Structured version   Visualization version   GIF version

Theorem isngp4 23148
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp4 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑧, +   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isngp4
StepHypRef Expression
1 ngpgrp 23135 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngpms 23136 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
3 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
4 ngprcan.p . . . . 5 + = (+g𝐺)
5 ngprcan.d . . . . 5 𝐷 = (dist‘𝐺)
63, 4, 5ngprcan 23146 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
76ralrimivvva 3189 . . 3 (𝐺 ∈ NrmGrp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
81, 2, 73jca 1120 . 2 (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
9 simp1 1128 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ Grp)
10 simp2 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ MetSp)
11 eqid 2818 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
123, 11grpinvcl 18089 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
1312ad2ant2rl 745 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
14 eqcom 2825 . . . . . . . . 9 (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)))
15 oveq2 7153 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑥 + 𝑧) = (𝑥 + ((invg𝐺)‘𝑦)))
16 oveq2 7153 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑦 + 𝑧) = (𝑦 + ((invg𝐺)‘𝑦)))
1715, 16oveq12d 7163 . . . . . . . . . 10 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))))
1817eqeq2d 2829 . . . . . . . . 9 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
1914, 18syl5bb 284 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑦) → (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2019rspcv 3615 . . . . . . 7 (((invg𝐺)‘𝑦) ∈ 𝑋 → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2113, 20syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
22 eqid 2818 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
233, 4, 11, 22grpsubval 18087 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2423adantl 482 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2524eqcomd 2824 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 + ((invg𝐺)‘𝑦)) = (𝑥(-g𝐺)𝑦))
26 eqid 2818 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
273, 4, 26, 11grprinv 18091 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2827ad2ant2rl 745 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2925, 28oveq12d 7163 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
303, 22grpsubcl 18117 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
31303expb 1112 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
3231adantlr 711 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
33 eqid 2818 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
3433, 3, 26, 5nmval 23126 . . . . . . . . 9 ((𝑥(-g𝐺)𝑦) ∈ 𝑋 → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3532, 34syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3629, 35eqtr4d 2856 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3736eqeq2d 2829 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) ↔ (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3821, 37sylibd 240 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3938ralimdvva 3176 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
40393impia 1109 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
4133, 22, 5, 3isngp3 23134 . . 3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
429, 10, 40, 41syl3anbrc 1335 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ NrmGrp)
438, 42impbii 210 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  distcds 16562  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042  -gcsg 18043  MetSpcms 22855  normcnm 23113  NrmGrpcngp 23114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-0g 16703  df-topgen 16705  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-xms 22857  df-ms 22858  df-nm 23119  df-ngp 23120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator