MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isngp4 Structured version   Visualization version   GIF version

Theorem isngp4 22617
Description: Express the property of being a normed group purely in terms of right-translation invariance of the metric instead of using the definition of norm (which itself uses the metric). (Contributed by Mario Carneiro, 29-Oct-2015.)
Hypotheses
Ref Expression
ngprcan.x 𝑋 = (Base‘𝐺)
ngprcan.p + = (+g𝐺)
ngprcan.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
isngp4 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑧, +   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem isngp4
StepHypRef Expression
1 ngpgrp 22604 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
2 ngpms 22605 . . 3 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
3 ngprcan.x . . . . 5 𝑋 = (Base‘𝐺)
4 ngprcan.p . . . . 5 + = (+g𝐺)
5 ngprcan.d . . . . 5 𝐷 = (dist‘𝐺)
63, 4, 5ngprcan 22615 . . . 4 ((𝐺 ∈ NrmGrp ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
76ralrimivvva 3110 . . 3 (𝐺 ∈ NrmGrp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦))
81, 2, 73jca 1123 . 2 (𝐺 ∈ NrmGrp → (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
9 simp1 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ Grp)
10 simp2 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ MetSp)
11 eqid 2760 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
123, 11grpinvcl 17668 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
1312ad2ant2rl 802 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝑦) ∈ 𝑋)
14 eqcom 2767 . . . . . . . . 9 (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)))
15 oveq2 6821 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑥 + 𝑧) = (𝑥 + ((invg𝐺)‘𝑦)))
16 oveq2 6821 . . . . . . . . . . 11 (𝑧 = ((invg𝐺)‘𝑦) → (𝑦 + 𝑧) = (𝑦 + ((invg𝐺)‘𝑦)))
1715, 16oveq12d 6831 . . . . . . . . . 10 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))))
1817eqeq2d 2770 . . . . . . . . 9 (𝑧 = ((invg𝐺)‘𝑦) → ((𝑥𝐷𝑦) = ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
1914, 18syl5bb 272 . . . . . . . 8 (𝑧 = ((invg𝐺)‘𝑦) → (((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) ↔ (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2019rspcv 3445 . . . . . . 7 (((invg𝐺)‘𝑦) ∈ 𝑋 → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
2113, 20syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦)))))
22 eqid 2760 . . . . . . . . . . . 12 (-g𝐺) = (-g𝐺)
233, 4, 11, 22grpsubval 17666 . . . . . . . . . . 11 ((𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2423adantl 473 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) = (𝑥 + ((invg𝐺)‘𝑦)))
2524eqcomd 2766 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 + ((invg𝐺)‘𝑦)) = (𝑥(-g𝐺)𝑦))
26 eqid 2760 . . . . . . . . . . 11 (0g𝐺) = (0g𝐺)
273, 4, 26, 11grprinv 17670 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2827ad2ant2rl 802 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + ((invg𝐺)‘𝑦)) = (0g𝐺))
2925, 28oveq12d 6831 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
303, 22grpsubcl 17696 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
31303expb 1114 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
3231adantlr 753 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(-g𝐺)𝑦) ∈ 𝑋)
33 eqid 2760 . . . . . . . . . 10 (norm‘𝐺) = (norm‘𝐺)
3433, 3, 26, 5nmval 22595 . . . . . . . . 9 ((𝑥(-g𝐺)𝑦) ∈ 𝑋 → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3532, 34syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((𝑥(-g𝐺)𝑦)𝐷(0g𝐺)))
3629, 35eqtr4d 2797 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3736eqeq2d 2770 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝐷𝑦) = ((𝑥 + ((invg𝐺)‘𝑦))𝐷(𝑦 + ((invg𝐺)‘𝑦))) ↔ (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3821, 37sylibd 229 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
3938ralimdvva 3102 . . . 4 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
40393impia 1110 . . 3 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
4133, 22, 5, 3isngp3 22603 . . 3 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐷𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦))))
429, 10, 40, 41syl3anbrc 1429 . 2 ((𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)) → 𝐺 ∈ NrmGrp)
438, 42impbii 199 1 (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥 + 𝑧)𝐷(𝑦 + 𝑧)) = (𝑥𝐷𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  distcds 16152  0gc0g 16302  Grpcgrp 17623  invgcminusg 17624  -gcsg 17625  MetSpcmt 22324  normcnm 22582  NrmGrpcngp 22583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-0g 16304  df-topgen 16306  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-xms 22326  df-ms 22327  df-nm 22588  df-ngp 22589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator